Convergence analysis of piecewise continuous collocation methods for higher index integral algebraic equations of the Hessenberg type
Babak Shiri ; Sedaghat Shahmorad ; Gholamreza Hojjati
International Journal of Applied Mathematics and Computer Science, Tome 23 (2013), p. 341-355 / Harvested from The Polish Digital Mathematics Library

In this paper, we deal with a system of integral algebraic equations of the Hessenberg type. Using a new index definition, the existence and uniqueness of a solution to this system are studied. The well-known piecewise continuous collocation methods are used to solve this system numerically, and the convergence properties of the perturbed piecewise continuous collocation methods are investigated to obtain the order of convergence for the given numerical methods. Finally, some numerical experiments are provided to support the theoretical results.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:256713
@article{bwmeta1.element.bwnjournal-article-amcv23z2p341bwm,
     author = {Babak Shiri and Sedaghat Shahmorad and Gholamreza Hojjati},
     title = {Convergence analysis of piecewise continuous collocation methods for higher index integral algebraic equations of the Hessenberg type},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {23},
     year = {2013},
     pages = {341-355},
     zbl = {1285.65094},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv23z2p341bwm}
}
Babak Shiri; Sedaghat Shahmorad; Gholamreza Hojjati. Convergence analysis of piecewise continuous collocation methods for higher index integral algebraic equations of the Hessenberg type. International Journal of Applied Mathematics and Computer Science, Tome 23 (2013) pp. 341-355. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv23z2p341bwm/

[000] Atkinson, K. (2001). Theoretical Numerical Analysis: A Functional Analysis Framework, Springer-Verlag, New York, NY. | Zbl 0966.65001

[001] Bandrowski, B., Karczewska, A. and Rozmej, P. (2010). Numerical solutions to integral equations equivalent to differential equations with fractional time, International Journal of Applied Mathematics and Computer Science 20(2): 261-269, DOI: 10.2478/v10006-010-0019-1. | Zbl 1201.35020

[002] Brunner, H. (1977). Discretization of Volterra integral equations of the first kind, Mathematics of Computation 31(139): 708-716. | Zbl 0372.65052

[003] Brunner, H. (1978). Discretization of Volterra integral equations of the first kind (II), Numerische Mathematik 30(2): 117-136. | Zbl 0366.65058

[004] Brunner, H. (2004). Collocation Methods for Volterra Integral and Related Functional Equations, Cambridge University Press, New York, NY. | Zbl 1059.65122

[005] Bulatov, M.V. (1994). Transformations of differential-algebraic systems of equations, Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki 34(3): 360-372. | Zbl 0818.34002

[006] Bulatov, M.V. (2002). Regularization of degenerate integro-differential equations, Computational Mathematics and Mathematical Physics 42(11): 1602-1608.

[007] Chistyakov, V.F. (1987). On Singular Systems of Ordinary Differential Equations. Lyapunov Functions and Their Applications, Siberian Publishing House NAUKA, Novosibirsk, pp. 231-239.

[008] Chistyakov, V.F. (1996). Algebro-Differential Operators With Finite-Dimensional Core, Siberian Publishing House NAUKA, Novosibirsk. | Zbl 0999.34002

[009] De Hoog, F.R. and Weiss, R. (1973a). High order methods for Volterra integral equations of the first kind, SIAM Journal on Numerical Analysis 10(4): 647-664. | Zbl 0261.65086

[010] De Hoog, F.R. and Weiss, R. (1973b). On the solution of Volterra integral equations of the first kind, Numerische Mathematik 21(1): 22-32. | Zbl 0262.65078

[011] Gear, C.W. (1990). Differential algebraic equations indices and integral algebraic equations, SIAM Journal on Numerical Analysis 27(6): 1527-1534. | Zbl 0732.65061

[012] Hadizadeh, M., Ghoreishi, F. and Pishbin, S. (2011). Jacobi spectral solution for integral algebraic equations of index-2, Applied Numerical Mathematics 61(1): 131-148. | Zbl 1206.65260

[013] Hochstadt, H. (1973). Integral Equations, John Wiley, New York, NY. | Zbl 0259.45001

[014] Kauthen, J.P. (1997). The numerical solution of Volterra integral-algebraic equations by collocation methods, Proceedings of the 15th IMACS World Congress on Scientific Computation, Modelling and Applied Mathematics, Berlin, Germany, Vol. 2, pp. 451-456.

[015] Kauthen, J.P. (2001). The numerical solution of integral-algebraic equations of index 1 by polynomial spline collocation methods, Mathematics of Computation 70(236): 1503-1514. | Zbl 0979.65122

[016] Kauthen, J.-P. and Brunner, H. (1997). Continuous collocation approximations to solutions of first kind Volterra equations, Mathematics of Computation 66(220): 1441-1459. | Zbl 0890.65138

[017] Lamm, P.K. (2005). Full convergence of sequential local regularization methods for Volterra inverse problems, Inverse Problems 21(3): 785-803. | Zbl 1085.65123

[018] Lamm, P.K. and Scofield, T.L. (2000). Sequential predictorcorrector methods for the variable regularization of Volterra inverse problems, Inverse Problems 16(2): 373-399. | Zbl 0972.65121

[019] Saeedi, H., Mollahasani, N., Mohseni Moghadam, M. and Chuev, G.N. (2011). An operational Haar wavelet method for solving fractional Volterra integral equations, International Journal of Applied Mathematics and Computer Science 21(3): 535-547, DOI: 10.2478/v10006-011-0042-x. | Zbl 1233.65100

[020] Weiss, R. (1972). Numerical Procedures for Volterra Integral Equations, Ph.D. thesis, Australian National University, Canberra.