The dynamics of a discrete-time predator-prey model with Holling-IV functional response are investigated. It is shown that the model undergoes a flip bifurcation, a Hopf bifurcation and a saddle-node bifurcation by using the center manifold theorem and bifurcation theory. Numerical simulations not only exhibit our results with the theoretical analysis, but also show the complex dynamical behaviors, such as the period-3, 6, 9, 12, 20, 63, 70, 112 orbits, a cascade of period-doubling bifurcations in period-2, 4, 8, 16, quasi-periodic orbits, an attracting invariant circle, an inverse period-doubling bifurcation from the period-32 orbit leading to chaos and a boundary crisis, a sudden onset of chaos and a sudden disappearance of the chaotic dynamics, attracting chaotic sets and non-attracting sets. We also observe that when the prey is in chaotic dynamics the predator can tend to extinction or to a stable equilibrium. Specifically, we stabilize the chaotic orbits at an unstable fixed point by using OGY chaotic control.
@article{bwmeta1.element.bwnjournal-article-amcv23z2p247bwm, author = {Qiaoling Chen and Zhidong Teng and Zengyun Hu}, title = {Bifurcation and control for a discrete-time prey-predator model with Holling-IV functional response}, journal = {International Journal of Applied Mathematics and Computer Science}, volume = {23}, year = {2013}, pages = {247-261}, zbl = {1279.49027}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv23z2p247bwm} }
Qiaoling Chen; Zhidong Teng; Zengyun Hu. Bifurcation and control for a discrete-time prey-predator model with Holling-IV functional response. International Journal of Applied Mathematics and Computer Science, Tome 23 (2013) pp. 247-261. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv23z2p247bwm/
[000] Busłowicz, M. (2012). Robust stability of positive continuous-time linear systems with delays, International Journal of Applied Mathematics and Computer Science 20(4): 665-670, DOI: 10.2478/v10006-010-0049-8. | Zbl 1214.93076
[001] Busłowicz, M. and Ruszewski, A. (2012). Computer method for stability analysis of the Roesser type model of 2D continous-discrete linear systems, International Journal of Applied Mathematics and Computer Science 22(2): 401-408, DOI: 10.2478/v10006-012-0030-9. | Zbl 1283.93234
[002] Duda, J. (2012). A Lyapunov functional for a system with a time-varying delay, International Journal of Applied Mathematics and Computer Science 22(2): 327-337, DOI: 10.2478/v10006-012-0024-7. | Zbl 1283.93247
[003] Fan, Y. and Li, W. (2004). Permanence for a delayed discrete ratio-dependent predator-prey system with Holling type functional response, Journal of Mathematical Analysis and Applications 299(2): 357-374. | Zbl 1063.39013
[004] Freedman, H.I. (1976). Graphical stability, enrichment, and pest control by a natural enemy, Mathematical Biosciences 31(3-4): 207-225. | Zbl 0373.92023
[005] Freedman, H.I. (1980). Deterministic Mathematical Models in Population Ecologys, Marcel Dekker, New York, NY. | Zbl 0448.92023
[006] Grebogi, C., Ott, E. and Yorke, J.A. (1983). Crises, sudden changes in chaotic attractors, and transient chaos, Physica D: Nonlinear Phenomena 7(1-3): 181-200. | Zbl 0561.58029
[007] Grebogi, C., Ott, E. and Yorke, J.A. (1986). Critical exponent of chaotic transients in nonlinear dynamical systems, Physical Review Letters 57(11): 1284-1287.
[008] Grebogi, C., Ott, E., Romeiras, F. and Yorke, J.A. (1987). Critical exponents for crisis-induced intermittency, Physical Review A 36(11): 5365-5380.
[009] Guckenheimer, J. and Holmes, P. (1983). Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, NY. | Zbl 0515.34001
[010] Hainzl, J. (1988). Stability and Hopf bifurcation in a predator-prey system with several parameters, SIAM Journal on Applied Mathematics 48(1): 170-190. | Zbl 0645.92017
[011] Harrison, G.W. (1986). Multiple stable equilibria in a predator-prey system, Bulletin of Mathematical Biology 48(2): 137-148. | Zbl 0585.92023
[012] He, Z. and Lai, X. (2011). Bifurcation and chaotic behavior of a discrete-time predator-prey system, Nonlinear Analysis: Real World Applications 12(1): 403-417. | Zbl 1202.93038
[013] Holling, C.S. (1965). The functional response of predators to prey density and its role in mimicry and population regulation, Memoirs of the Entomological Society of Canada 97(45): 1-60.
[014] Hsu, S.B. (1978). The application of the Poincare-transform to the Lotka-Volterra model, Journal of Mathematical Biology 6(1): 67-73. | Zbl 0389.92019
[015] Hu, Z., Teng, Z. and Zhang, L. (2011). Stability and bifurcation analysis of a discrete predator-prey model with nonmonotonic functional response, Nonlinear Analysis: Real World Applications 12(4): 2356-2377. | Zbl 1215.92063
[016] Huang, J. and Xiao, D. (2004). Analyses of bifurcations and stability in a predator-prey system with Holling type-IV functional response, Acta Mathematicae Applicatae Sinica 20(1): 167-178. | Zbl 1062.92070
[017] Jing, Z. (1989). Local and global bifurcations and applications in a predator-prey system with several parameters, Systems Science and Mathematical Sciences 2(4): 337-352. | Zbl 0721.92018
[018] Jing, Z. , Chang, Y. and Guo, B. (2004). Bifurcation and chaos in discrete FitzHugh-Nagumo system, Chaos, Solitons & Fractals 21(3): 701-720. | Zbl 1048.37526
[019] Jing, Z. and Yang, J. (2006). Bifurcation and chaos in discrete-time predator-prey system, Chaos, Solitons & Fractals 27(1): 259-277. | Zbl 1085.92045
[020] Kazarinoff, N.D. and Van Den Driessche, P. (1978). A model predator-prey system with functional response, Mathematical Biosciences 39(1-2): 125-134. | Zbl 0382.92007
[021] Kuznetsov, Y.A. (1998). Elements of Applied Bifurcation Theory, Springer-Verlag, Berlin. | Zbl 0914.58025
[022] Liu, X. and Xiao, D. (2007). Complex dynamic behaviors of a discrete-time predator-prey system, Chaos, Solitons & Fractals 32(1): 80-94. | Zbl 1130.92056
[023] Liu, W., Li, D. and Yao, T. (2010). Qualitative analysis of Holling IV predator-prey system with double density retrie, Natural Sciences Journal of Harbin Normal University 26(6): 8-12, (in Chinese).
[024] Ott, E., Grebogi, C. and Yorke, J.A. (1990). Controlling chaos, Physical Review Letters 64(11): 1196-1199. | Zbl 0964.37501
[025] Raja, R., Sakthivel, R., Anthoni, S.M. and Kim, H. (2011). Stability of impulsive Hopfield neural networks with Markovian switching and time-varying delays, International Journal of Applied Mathematics and Computer Science 21(1): 127-135, DOI: 10.2478/v10006-011-0009-y. | Zbl 1221.93265
[026] Robinson, C. (1999). Dynamical Systems, Stability, Symbolic Dynamics and Chaos, 2nd Edn., CRC Press, Boca Raton, FL/London/New York, NY/Washington, DC. | Zbl 0914.58021
[027] Ruan, S. and Xiao, D. (2001). Global analysis in a predator-prey system with nonmonotonic functional response, SIAM Journal on Applied Mathematics 61(4): 1445-1472. | Zbl 0986.34045
[028] Scholl, E. and Schuster, H.G. (2008). Handbook of Chaos Control, Wiley-VCH, Weinheim. | Zbl 1130.93001
[029] Tong, Y., Liu, Z. and Wang, Y. (2012). Existence of period solutions for a predator-prey system with sparse effect and functional response on time scales, Communications in Nonlinear Science and Numerical Simulation 17(8): 3360-3366. | Zbl 1250.92042
[030] Wang, Y., Jing, Z. and Chan, K. (1999). Multiple limit cycles and global stability in predator-prey model, Acta Mathematicae Applicatae Sinica 15(2): 206-219. | Zbl 0936.34024
[031] Wiggins, S. (1990). Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, Berlin. | Zbl 0701.58001
[032] Wolkowicz, G.S.K. (1988). Bifurcation analysis of a predator-prey system involving group defence, SIAM Journal on Applied Mathematics 48(3): 592-606. | Zbl 0657.92015
[033] Xu, C., Liao, M. and He, X. (2011). Stability and Hopf bifurcation analysis for a Lotka-Volterra predator-prey model with two delays, International Journal of Applied Mathematics and Computer Science 21(1): 97-107, DOI: 10.2478/v10006-011-0007-0. | Zbl 1231.34151
[034] Zhang, Q., Yang, L. and Liao, D. (2011). Existence and exponential stability of a periodic solution for fuzzy cellar neural networks with time-varying delays, International Journal of Applied Mathematics and Computer Science 21(4): 649-658, DOI: 10.2478/v10006-011-0051-9. | Zbl 1283.93239