Noise effects in the quantum search algorithm from the viewpoint of computational complexity
Piotr Gawron ; Jerzy Klamka ; Ryszard Winiarczyk
International Journal of Applied Mathematics and Computer Science, Tome 22 (2012), p. 493-499 / Harvested from The Polish Digital Mathematics Library

We analyse the resilience of the quantum search algorithm in the presence of quantum noise modelled as trace preserving completely positive maps. We study the influence of noise on the computational complexity of the quantum search algorithm. We show that it is only for small amounts of noise that the quantum search algorithm is still more efficient than any classical algorithm.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:208124
@article{bwmeta1.element.bwnjournal-article-amcv22i2p493bwm,
     author = {Piotr Gawron and Jerzy Klamka and Ryszard Winiarczyk},
     title = {Noise effects in the quantum search algorithm from the viewpoint of computational complexity},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {22},
     year = {2012},
     pages = {493-499},
     zbl = {1285.81012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv22i2p493bwm}
}
Piotr Gawron; Jerzy Klamka; Ryszard Winiarczyk. Noise effects in the quantum search algorithm from the viewpoint of computational complexity. International Journal of Applied Mathematics and Computer Science, Tome 22 (2012) pp. 493-499. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv22i2p493bwm/

[000] Azuma, H. (2005). Higher-order perturbation theory for decoherence in Grover's algorithm, Physical Review A 72(4): 42305.

[001] Barnes, J.P. and Warren, W.S. (1999). Decoherence and programmable quantum computation, Physical Review A 60(6): 4363-4374.

[002] Bengtsson, I. and Życzkowski, K. (2006). Geometry of Quantum States. An Introduction to Quantum Entanglement, Cambridge University Press, Cambridge. | Zbl 1146.81004

[003] Bouwmeester, D., Ekert, A. and Zeilinger, A. (2000). The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation, Physics and Astronomy Online Library, Springer, http://www.springer.com/physics/quantum +physics/book/978-3-540-66778-0. | Zbl 1008.81504

[004] Bugajski, S. (2001). Quantum search, Archiwum Informatyki Teoretycznej i Stosowanej 13(2): 143-150.

[005] Gawron, P., Klamka, J., Miszczak, J.A. and Winiarczyk, R. (2010). Extending scientific computing system with structural quantum programming capabilities, Bulletin of the Polish Academy of Sciences: Technical Sciences 58(1): 77-88.

[006] Grover, L. (1996). A fast quantum mechanical algorithm for database search, Proceedings of the 28th Annual ACM Symposium on the Theory of Computation, Philadelphia, PA, USA, pp. 212-219. | Zbl 0922.68044

[007] Grover, L.K. (1997). Quantum mechanics helps in searching for a needle in a haystack, Physical Review Letters 79(2): 325.

[008] Grover, L.K. (1998). A framework for fast quantum mechanical algorithms, Proceedings of the 30th Annual ACM Symposium on Theory of Computing (STOC), Dallas, TX, USA, pp. 53-62. | Zbl 1028.68055

[009] Konstadakis, C. and Ellinas, D. (2001). Noisy Grover's Searching Algorithm, OSA Technical Digest Series, Optical Society of America, Rochester/New York, NY.

[010] Long, G.L., Li, Y.S., Zhang, W.L. and Tu, C.C. (2000). Dominant gate imperfection in Grover's quantum search algorithm, Physical Review A 61(4): 42305.

[011] Nielsen, M. and Chuang, I. (1999). Quantum Computation and Quantum Information, Cambridge University Press, Cambridge. | Zbl 1049.81015

[012] Pablo-Norman, B. and Ruiz-Altaba, M. (1999). Noise in Grover's quantum search algorithm, Physical Review A 61(1): 12301.

[013] Salas, P.J. (2008). Noise effect on Grover algorithm, The European Physical Journal D 46(2): 365-373.

[014] Shapira, D., Mozes, S. and Biham, O. (2003). Effect of unitary noise on Grover's quantum search algorithm, Physical Review A 67(4): 42301.

[015] Shenvi, N., Brown, K.R. and Whaley, K.B. (2003). Effects of a random noisy oracle on search algorithm complexity, Physical Review A 68(5): 52313.

[016] Zhirov, O.V. and Shepelyansky, D.L. (2006). Dissipative decoherence in the Grover algorithm, The European Physical Journal D 38(2): 405-408.