The paper presents a method to determine a Lyapunov functional for a linear time-invariant system with an interval timevarying delay. The functional is constructed for the system with a time-varying delay with a given time derivative, which is calculated on the system trajectory. The presented method gives analytical formulas for the coefficients of the Lyapunov functional.
@article{bwmeta1.element.bwnjournal-article-amcv22i2p327bwm, author = {J\'ozef Duda}, title = {A Lyapunov functional for a system with a time-varying delay}, journal = {International Journal of Applied Mathematics and Computer Science}, volume = {22}, year = {2012}, pages = {327-337}, zbl = {1283.93247}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv22i2p327bwm} }
Józef Duda. A Lyapunov functional for a system with a time-varying delay. International Journal of Applied Mathematics and Computer Science, Tome 22 (2012) pp. 327-337. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv22i2p327bwm/
[000] Duda, J. (1986). Parametric Optimization Problem for Systems with Time Delay, Ph.D. thesis, AGH University of Science and Technology, Cracow.
[001] Duda, J. (1988). Parametric optimization of neutral linear system with respect to the general quadratic performance index, Archiwum Automatyki i Telemechaniki 33(3): 448-456. | Zbl 0696.34051
[002] Duda, J. (2010a). Lyapunov functional for a linear system with two delays, Control & Cybernetics 39(3): 797-809. | Zbl 1280.93036
[003] Duda, J. (2010b). Lyapunov functional for a linear system with two delays both retarded and neutral type, Archives of Control Sciences 20(LVI): 89-98. | Zbl 1219.93089
[004] Fridman, E. (2001). New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems, Systems & Control Letters 43(4): 309-319. | Zbl 0974.93028
[005] Górecki, H., Fuksa, S., Grabowski, P., Korytowski, A. (1989). Analysis and Synthesis of Time Delay Systems, John Wiley & Sons, Chichester/New York, NY/Brisbane/Toronto/Singapore. | Zbl 0695.93002
[006] Gu, K. (1997). Discretized LMI set in the stability problem of linear time delay systems, International Journal of Control 68(4): 923-934. | Zbl 0986.93061
[007] Gu, K. and Liu, Y. (2009). Lyapunov-Krasovskii functional for uniform stability of coupled differential-functional equations, Automatica 45(3): 798-804. | Zbl 1168.93384
[008] Han, Q.L. (2004). On robust stability of neutral systems with time-varying discrete delay and norm-bounded uncertainty, Automatica 40(6): 1087-1092. | Zbl 1073.93043
[009] Han, Q.L. (2004). A descriptor system approach to robust stability of uncertain neutral systems with discrete and distributed delays, Automatica 40(10): 1791-1796. | Zbl 1075.93032
[010] Han, Q.L. (2005). On stability of linear neutral systems with mixed time delays: A discretised Lyapunov functional approach, Automatica 41(7): 1209-1218. | Zbl 1091.34041
[011] Han, Q.L. (2009). A discrete delay decomposition approach to stability of linear retarded and neutral systems, Automatica 45(2): 517-524. | Zbl 1158.93385
[012] Infante, E.F. and Castelan, W.B. (1978). A Lyapunov functional for a matrix difference-differential equation, Journal of Differential Equations 29: 439-451. | Zbl 0354.34049
[013] Ivanescu, D., Niculescu, S.I., Dugard, L., Dion, J.M. and Verriest, E.I. (2003). On delay-dependent stability for linear neutral systems, Automatica 39(2): 255-261. | Zbl 1011.93062
[014] Kharitonov, V.L. (2005). Lyapunov functionals and Lyapunov matrices for neutral type time delay systems: A single delay case, International Journal of Control 78(11): 783-800. | Zbl 1097.93027
[015] Kharitonov, V.L. (2008). Lyapunov matrices for a class of neutral type time delay systems, International Journal of Control 81(6): 883-893. | Zbl 1152.34375
[016] Kharitonov, V.L. and Hinrichsen, D. (2004). Exponential estimates for time delay systems, Systems & Control Letters 53(5): 395-405. | Zbl 1157.34355
[017] Kharitonov, V.L. and Plischke, E. (2006). Lyapunov matrices for time-delay systems, Systems & Control Letters 55(9): 697-706. | Zbl 1100.93045
[018] Kharitonov, V.L., Zhabko, A.P. (2003). Lyapunov-Krasovskii approach to the robust stability analysis of time-delay systems, Automatica 39(1): 15-20. | Zbl 1014.93031
[019] Klamka, J. (1991). Controllability of Dynamical Systems, Kluwer Academic Publishers, Dordrecht. | Zbl 0732.93008
[020] Repin, Yu. M. (1965). Quadratic Lyapunov functionals for systems with delay, Prikladnaja Matiematika i Miechanika 29: 564-566.
[021] Respondek, J.S. (2008). Approximate controllability of the n-th order infinite dimensional systems with controls delayed by the control devices, International Journal of Systems Science 39(8): 765-782. | Zbl 1283.93054
[022] Richard, J.P. (2003). Time-delay systems: An overview of some recent advances and open problems, Automatica 39(10): 1667-1694. | Zbl 1145.93302
[023] Wang, D., Wang, W. and Shi, P. (2009). Exponential H-infinity filtering for switched linear systems with interval timevarying delay, International Journal of Robust and Nonlinear Control 19(5): 532-551. | Zbl 1160.93328