A modified filter SQP method as a tool for optimal control of nonlinear systems with spatio-temporal dynamics
Ewaryst Rafajłowicz ; Krystyn Styczeń ; Wojciech Rafajłowicz
International Journal of Applied Mathematics and Computer Science, Tome 22 (2012), p. 313-326 / Harvested from The Polish Digital Mathematics Library

Our aim is to adapt Fletcher's filter approach to solve optimal control problems for systems described by nonlinear Partial Differential Equations (PDEs) with state constraints. To this end, we propose a number of modifications of the filter approach, which are well suited for our purposes. Then, we discuss possible ways of cooperation between the filter method and a PDE solver, and one of them is selected and tested.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:208110
@article{bwmeta1.element.bwnjournal-article-amcv22i2p313bwm,
     author = {Ewaryst Rafaj\l owicz and Krystyn Stycze\'n and Wojciech Rafaj\l owicz},
     title = {A modified filter SQP method as a tool for optimal control of nonlinear systems with spatio-temporal dynamics},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {22},
     year = {2012},
     pages = {313-326},
     zbl = {1286.49032},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv22i2p313bwm}
}
Ewaryst Rafajłowicz; Krystyn Styczeń; Wojciech Rafajłowicz. A modified filter SQP method as a tool for optimal control of nonlinear systems with spatio-temporal dynamics. International Journal of Applied Mathematics and Computer Science, Tome 22 (2012) pp. 313-326. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv22i2p313bwm/

[000] Armaou, A. and Christofides P.D. (2002). Dynamic optimization of dissipative PDE systems using nonlinear order reduction, Chemical Engineering Science 57: 5083-5114.

[001] Aschemanna, H., Kostinb, G.V., Rauha, A. and Saurinb, V.V. (2010). Approaches to control design and optimization in heat transfer problems, International Journal of Computer and Systems Sciences 49(3): 380-391.

[002] Audet, C. and Dennis, J.E. (2004). A pattern search filter method for nonlinear programming without derivatives, SIAM Journal on Optimization 14(4): 980-1010. | Zbl 1073.90066

[003] Bellavia, S., Macconi, M. and Morini, B. (2004). STRSCNE: A scaled trust-region solver for constrained nonlinear equations, Computational Optimization and Applications 28(1): 31-50. | Zbl 1056.90128

[004] Betts, J.T. (2010). Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, 2nd Edn., Society for Industrial and Applied Mathematics, Philadelphia, PA. | Zbl 1189.49001

[005] Biegler, L.T. (2010). Nonlinear Programming. Concepts, Algorithms, and Applications to Chemical Processes, SIAM, Philadelphia, PA. | Zbl 1207.90004

[006] Burger, J. and Pogu, M. (1991). Functional and numerical solution of a control problem originating from heat transfer, Journal of Optimization Theory and Applications 68(1): 49-73. | Zbl 0697.49031

[007] Broyden, C.G. (1970). The convergence of a class of doublerank minimization algorithms, Journal of the Institute of Mathematics and Its Applications 6: 76-90. | Zbl 0223.65023

[008] Butkovskiy, A.G. (1969). Distributed Control Systems, 1st Edn., Elsevier, New York, NY. | Zbl 0197.42204

[009] Byrd, R.H., Curtis, F.E. and Nocedal,J. (2010). Infeasibility detection and SQP methods for nonlinear optimization, SIAM Journal on Optimization 20(5): 2281-2299. | Zbl 1211.90179

[010] Chin, C.M. and Fletcher, R. (2003). On the global convergence of an SLP-filter algorithm that takes EQP steps, Mathematical Programming 96(1): 161-177. | Zbl 1023.90060

[011] Chin, C.M., Rashid, A.H.A. and Nor, K.M. (2007). Global and local convergence of a filter line search method for nonlinear programming, Optimization Methods and Software 22(3): 365-390. | Zbl 1193.90192

[012] Christofides, P.D. (2001). Nonlinear and Robust Control of PDE Systems: Methods and Applications to Transport-Reaction Processes, Birkhauser, Boston, MA. | Zbl 1018.93001

[013] Conn, A.R., Gould, N. I. and Toint, P.L. (2000). Trust-Region Methods, MPS-SIAM Series on Optimization, SIAM, Philadelphia, PA. | Zbl 0958.65071

[014] Demetriou, M.A. and Kazantzis, N. (2004). A new actuator activation policy for performance enhancement of controlled diffusion processes, Automatica 40(3): 415-421. | Zbl 1051.93046

[015] El-Farra, N.E., Armaou, A. and Christofides, P.D. (2003). Analysis and control of parabolic PDE systems with input constraints, Automatica 39(3): 715-725. | Zbl 1034.93030

[016] Fattorini, H.O. (1999). Infinite Dimensional Optimization and Control Theory, Cambridge University Press, Cambridge. | Zbl 0931.49001

[017] Fletcher R. and Leyffer, S. (2002). Nonlinear programming without a penalty function, Mathematical Programming, Series A 91(2): 239-269. | Zbl 1049.90088

[018] Fletcher, R., Leyffer, and Toint, P.L. (2002a). On the global convergence of a filter-SQP algorithm, SIAM Journal on Optimization 13(1): 44-59. | Zbl 1029.65063

[019] Fletcher R., Gould, N.I.M., Leyffer, S., Toint, Ph.L. and Wachter, A. (2002b). Global convergence of trust-region SQP-filter algorithms for general nonlinear programming, SIAM Journal on Optimization 13(3): 635-659. | Zbl 1038.90076

[020] Fletcher, R. (2010). The sequential quadratic programming method, in G. Di Pillo and F. Schoen (Eds.), Nonlinear Optimization, Lecture Notes in Mathematics, Vol. 1989, Springer-Verlag, Berlin/Heidelberg. | Zbl 1192.90002

[021] Han, J. and Papalambros, P.Y. (2010). An SLP Filter algorithm for probabilistic analytical target cascading, Structural and Multidisciplinary Optimization 41(5): 935-945.

[022] Hinze, M., Pinnau, R., Ulbrich, M. and Ulbrich S. (2009). Optimization with PDE Constraints, Springer, Berlin/Heidelberg. | Zbl 1167.49001

[023] Lasiecka, I. and Triggiani, R. (2000). Control Theory for Partial Differential Equations: Continuous and Approximation Theories, Vol. I: Abstract Parabolic Systems, Vol. II: Abstract Hyperbolic-Like Systems over a Finite Time Horizon, Encyclopedia of Mathematics and Its Applications, Vol. 74, Cambridge University Press, Cambridge. | Zbl 0961.93003

[024] Lasiecka, I. and Chueshow, I. (2010). Von Karman Evolution Equations: Well-posedness and Long Time Dynamics, Springer, Berlin/Heidelberg.

[025] Lasiecka, I. and Chueshow I. (2008). Long-time Behavior of Second Order Evolution Equations with Nonlinear Damping, Memoirs of the American Mathematical Society, Philadephia, PA.

[026] Li, D. (2006). A new SQP-filter method for solving nonlinear programming problems, Journal of Computational Mathematics 24(5): 609-634. | Zbl 1114.65065

[027] Nie, P. and Ma, C. (2006). A trust-region filter method for general non-linear programming, Applied Mathematics and Computation 172(2): 1000-1017. | Zbl 1094.65060

[028] Nettaanmaki P. and Tiba, D. (1994). Optimal Control of Nonlinear Parabolic Systems, Marcel Dekker, New York, NY.

[029] Nocedal J. and Wright, S.J. (2006). Numerical Optimization, Springer, Berlin/Heidelberg. | Zbl 1104.65059

[030] Perona, P. and Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence 12(7): 629-639.

[031] Rafajłowicz, E. (2008). Testing homogeneity of coefficients in distributed systems with application to quality monitoring, IEEE Transactions on Control Systems Technology 16: 314-321.

[032] Rafajłowicz, E. and Rafajłowicz, W. (2010). Testing (non-)linearity of distributed-parameter systems from a video sequence, Asian Journal of Control 12(2): 453-461.

[033] Schittkowski, K. (2002). Numerical Data Fitting in Dynamical Systems; A Practical Introduction with Applications and Software, Applied Optimization, Vol. 77, Kluwer Academic Publishers, Dordrecht. | Zbl 1018.65077

[034] Schittkowski, K. (2009). An active set strategy for solving optimization problems with up to 200,000,000 nonlinear constraints, Applied Numerical Mathematics 59(12): 2999-3007. | Zbl 1173.65044

[035] Shen, C., Xue, W. and Pu, D. (2009). Global convergence of a tridimensional filter SQP algorithm based on the line search method, Applied Numerical Mathematics 59(2): 235-250. | Zbl 1155.90023

[036] Shen, C., Xue, W. and Chen, X. (2010). Global convergence of a robust filter SQP algorithm, European Journal of Operational Research 206(1): 34-45. | Zbl 1188.90191

[037] Skowron, M. and Styczeń, K., (2009). Evolutionary search for globally optimal stable multicycles in complex systems with inventory couplings, International Journal of Chemical Engineering, Article ID 137483, DOI:10.1155/2009/137483.

[038] Su, K. and Che, J. (2007). A modified SQP-filter method and its global convergence, Applied Mathematics and Computation 194(1): 92-101. | Zbl 1193.90215

[039] Su, K. and Yu, Z. (2009). A modified SQP method with nonmonotone technique and its global convergence, Computers and Mathematics with Applications 57(2): 240-247. | Zbl 1165.90684

[040] Troltzsch, F. (2010). Optimal Control of Partial Differential Equations. Theory, Methods and Applications, American Mathematical Society Press, Providence, RI. | Zbl 1195.49001

[041] Turco, A. (2010). Adaptive filter SQP, in C. Blum and R. Battiti (Eds.), Learning and Intelligent Optimization, Lecture Notes in Computer Science, Vol. 6073, Springer-Verlag, Berlin/Heidelberg, pp. 68-81.

[042] Uciński, D. (2005). Optimal Measurement Methods for Distributed Parameter System Identification, CRC Press, London/New York, NY. | Zbl 1155.93003

[043] Ulbrich, S. (2004). On the superlinear local convergence of a filter-SQP method, Mathematical Programming, Series B 100(1): 217-245. | Zbl 1146.90525