Our aim is to adapt Fletcher's filter approach to solve optimal control problems for systems described by nonlinear Partial Differential Equations (PDEs) with state constraints. To this end, we propose a number of modifications of the filter approach, which are well suited for our purposes. Then, we discuss possible ways of cooperation between the filter method and a PDE solver, and one of them is selected and tested.
@article{bwmeta1.element.bwnjournal-article-amcv22i2p313bwm, author = {Ewaryst Rafaj\l owicz and Krystyn Stycze\'n and Wojciech Rafaj\l owicz}, title = {A modified filter SQP method as a tool for optimal control of nonlinear systems with spatio-temporal dynamics}, journal = {International Journal of Applied Mathematics and Computer Science}, volume = {22}, year = {2012}, pages = {313-326}, zbl = {1286.49032}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv22i2p313bwm} }
Ewaryst Rafajłowicz; Krystyn Styczeń; Wojciech Rafajłowicz. A modified filter SQP method as a tool for optimal control of nonlinear systems with spatio-temporal dynamics. International Journal of Applied Mathematics and Computer Science, Tome 22 (2012) pp. 313-326. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv22i2p313bwm/
[000] Armaou, A. and Christofides P.D. (2002). Dynamic optimization of dissipative PDE systems using nonlinear order reduction, Chemical Engineering Science 57: 5083-5114.
[001] Aschemanna, H., Kostinb, G.V., Rauha, A. and Saurinb, V.V. (2010). Approaches to control design and optimization in heat transfer problems, International Journal of Computer and Systems Sciences 49(3): 380-391.
[002] Audet, C. and Dennis, J.E. (2004). A pattern search filter method for nonlinear programming without derivatives, SIAM Journal on Optimization 14(4): 980-1010. | Zbl 1073.90066
[003] Bellavia, S., Macconi, M. and Morini, B. (2004). STRSCNE: A scaled trust-region solver for constrained nonlinear equations, Computational Optimization and Applications 28(1): 31-50. | Zbl 1056.90128
[004] Betts, J.T. (2010). Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, 2nd Edn., Society for Industrial and Applied Mathematics, Philadelphia, PA. | Zbl 1189.49001
[005] Biegler, L.T. (2010). Nonlinear Programming. Concepts, Algorithms, and Applications to Chemical Processes, SIAM, Philadelphia, PA. | Zbl 1207.90004
[006] Burger, J. and Pogu, M. (1991). Functional and numerical solution of a control problem originating from heat transfer, Journal of Optimization Theory and Applications 68(1): 49-73. | Zbl 0697.49031
[007] Broyden, C.G. (1970). The convergence of a class of doublerank minimization algorithms, Journal of the Institute of Mathematics and Its Applications 6: 76-90. | Zbl 0223.65023
[008] Butkovskiy, A.G. (1969). Distributed Control Systems, 1st Edn., Elsevier, New York, NY. | Zbl 0197.42204
[009] Byrd, R.H., Curtis, F.E. and Nocedal,J. (2010). Infeasibility detection and SQP methods for nonlinear optimization, SIAM Journal on Optimization 20(5): 2281-2299. | Zbl 1211.90179
[010] Chin, C.M. and Fletcher, R. (2003). On the global convergence of an SLP-filter algorithm that takes EQP steps, Mathematical Programming 96(1): 161-177. | Zbl 1023.90060
[011] Chin, C.M., Rashid, A.H.A. and Nor, K.M. (2007). Global and local convergence of a filter line search method for nonlinear programming, Optimization Methods and Software 22(3): 365-390. | Zbl 1193.90192
[012] Christofides, P.D. (2001). Nonlinear and Robust Control of PDE Systems: Methods and Applications to Transport-Reaction Processes, Birkhauser, Boston, MA. | Zbl 1018.93001
[013] Conn, A.R., Gould, N. I. and Toint, P.L. (2000). Trust-Region Methods, MPS-SIAM Series on Optimization, SIAM, Philadelphia, PA. | Zbl 0958.65071
[014] Demetriou, M.A. and Kazantzis, N. (2004). A new actuator activation policy for performance enhancement of controlled diffusion processes, Automatica 40(3): 415-421. | Zbl 1051.93046
[015] El-Farra, N.E., Armaou, A. and Christofides, P.D. (2003). Analysis and control of parabolic PDE systems with input constraints, Automatica 39(3): 715-725. | Zbl 1034.93030
[016] Fattorini, H.O. (1999). Infinite Dimensional Optimization and Control Theory, Cambridge University Press, Cambridge. | Zbl 0931.49001
[017] Fletcher R. and Leyffer, S. (2002). Nonlinear programming without a penalty function, Mathematical Programming, Series A 91(2): 239-269. | Zbl 1049.90088
[018] Fletcher, R., Leyffer, and Toint, P.L. (2002a). On the global convergence of a filter-SQP algorithm, SIAM Journal on Optimization 13(1): 44-59. | Zbl 1029.65063
[019] Fletcher R., Gould, N.I.M., Leyffer, S., Toint, Ph.L. and Wachter, A. (2002b). Global convergence of trust-region SQP-filter algorithms for general nonlinear programming, SIAM Journal on Optimization 13(3): 635-659. | Zbl 1038.90076
[020] Fletcher, R. (2010). The sequential quadratic programming method, in G. Di Pillo and F. Schoen (Eds.), Nonlinear Optimization, Lecture Notes in Mathematics, Vol. 1989, Springer-Verlag, Berlin/Heidelberg. | Zbl 1192.90002
[021] Han, J. and Papalambros, P.Y. (2010). An SLP Filter algorithm for probabilistic analytical target cascading, Structural and Multidisciplinary Optimization 41(5): 935-945.
[022] Hinze, M., Pinnau, R., Ulbrich, M. and Ulbrich S. (2009). Optimization with PDE Constraints, Springer, Berlin/Heidelberg. | Zbl 1167.49001
[023] Lasiecka, I. and Triggiani, R. (2000). Control Theory for Partial Differential Equations: Continuous and Approximation Theories, Vol. I: Abstract Parabolic Systems, Vol. II: Abstract Hyperbolic-Like Systems over a Finite Time Horizon, Encyclopedia of Mathematics and Its Applications, Vol. 74, Cambridge University Press, Cambridge. | Zbl 0961.93003
[024] Lasiecka, I. and Chueshow, I. (2010). Von Karman Evolution Equations: Well-posedness and Long Time Dynamics, Springer, Berlin/Heidelberg.
[025] Lasiecka, I. and Chueshow I. (2008). Long-time Behavior of Second Order Evolution Equations with Nonlinear Damping, Memoirs of the American Mathematical Society, Philadephia, PA.
[026] Li, D. (2006). A new SQP-filter method for solving nonlinear programming problems, Journal of Computational Mathematics 24(5): 609-634. | Zbl 1114.65065
[027] Nie, P. and Ma, C. (2006). A trust-region filter method for general non-linear programming, Applied Mathematics and Computation 172(2): 1000-1017. | Zbl 1094.65060
[028] Nettaanmaki P. and Tiba, D. (1994). Optimal Control of Nonlinear Parabolic Systems, Marcel Dekker, New York, NY.
[029] Nocedal J. and Wright, S.J. (2006). Numerical Optimization, Springer, Berlin/Heidelberg. | Zbl 1104.65059
[030] Perona, P. and Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence 12(7): 629-639.
[031] Rafajłowicz, E. (2008). Testing homogeneity of coefficients in distributed systems with application to quality monitoring, IEEE Transactions on Control Systems Technology 16: 314-321.
[032] Rafajłowicz, E. and Rafajłowicz, W. (2010). Testing (non-)linearity of distributed-parameter systems from a video sequence, Asian Journal of Control 12(2): 453-461.
[033] Schittkowski, K. (2002). Numerical Data Fitting in Dynamical Systems; A Practical Introduction with Applications and Software, Applied Optimization, Vol. 77, Kluwer Academic Publishers, Dordrecht. | Zbl 1018.65077
[034] Schittkowski, K. (2009). An active set strategy for solving optimization problems with up to 200,000,000 nonlinear constraints, Applied Numerical Mathematics 59(12): 2999-3007. | Zbl 1173.65044
[035] Shen, C., Xue, W. and Pu, D. (2009). Global convergence of a tridimensional filter SQP algorithm based on the line search method, Applied Numerical Mathematics 59(2): 235-250. | Zbl 1155.90023
[036] Shen, C., Xue, W. and Chen, X. (2010). Global convergence of a robust filter SQP algorithm, European Journal of Operational Research 206(1): 34-45. | Zbl 1188.90191
[037] Skowron, M. and Styczeń, K., (2009). Evolutionary search for globally optimal stable multicycles in complex systems with inventory couplings, International Journal of Chemical Engineering, Article ID 137483, DOI:10.1155/2009/137483.
[038] Su, K. and Che, J. (2007). A modified SQP-filter method and its global convergence, Applied Mathematics and Computation 194(1): 92-101. | Zbl 1193.90215
[039] Su, K. and Yu, Z. (2009). A modified SQP method with nonmonotone technique and its global convergence, Computers and Mathematics with Applications 57(2): 240-247. | Zbl 1165.90684
[040] Troltzsch, F. (2010). Optimal Control of Partial Differential Equations. Theory, Methods and Applications, American Mathematical Society Press, Providence, RI. | Zbl 1195.49001
[041] Turco, A. (2010). Adaptive filter SQP, in C. Blum and R. Battiti (Eds.), Learning and Intelligent Optimization, Lecture Notes in Computer Science, Vol. 6073, Springer-Verlag, Berlin/Heidelberg, pp. 68-81.
[042] Uciński, D. (2005). Optimal Measurement Methods for Distributed Parameter System Identification, CRC Press, London/New York, NY. | Zbl 1155.93003
[043] Ulbrich, S. (2004). On the superlinear local convergence of a filter-SQP method, Mathematical Programming, Series B 100(1): 217-245. | Zbl 1146.90525