A model-based approach to fault-tolerant control
Hans Henrik Niemann
International Journal of Applied Mathematics and Computer Science, Tome 22 (2012), p. 67-86 / Harvested from The Polish Digital Mathematics Library

A model-based controller architecture for Fault-Tolerant Control (FTC) is presented in this paper. The controller architecture is based on a general controller parameterization. The FTC architecture consists of two main parts, a Fault Detection and Isolation (FDI) part and a controller reconfiguration part. The theoretical basis for the architecture is given followed by an investigation of the single parts in the architecture. It is shown that the general controller parameterization is central in connection with both fault diagnosis as well as controller reconfiguration. Especially in relation to the controller reconfiguration part, the application of controller parameterization results in a systematic technique for switching between different controllers. This also allows controller switching using different sets of actuators and sensors.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:208101
@article{bwmeta1.element.bwnjournal-article-amcv22i1p67bwm,
     author = {Hans Henrik Niemann},
     title = {A model-based approach to fault-tolerant control},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {22},
     year = {2012},
     pages = {67-86},
     zbl = {1273.93053},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv22i1p67bwm}
}
Hans Henrik Niemann. A model-based approach to fault-tolerant control. International Journal of Applied Mathematics and Computer Science, Tome 22 (2012) pp. 67-86. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv22i1p67bwm/

[000] Basseville, M. and Nikiforov, I. (1993). Detection of Abrupt Changes-Theory and Application, Prentice Hall, Upper Saddle River, NJ.

[001] Blanke, M., Frei, C., Kraus, F., Patton, R. and Staroswiecki, M. (2000). What is fault-tolerant control?, Preprints of the 4th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes, SAFEPROCESS'2000, Budapest, Hungary, pp. 40-51.

[002] Blanke, M., Izadi-Zamanabadi, R., Bøgh, S. and Lunau, C. (1997). Fault tolerant control systems-A holistic view, Control Engineering Practice 5(5): 693-702.

[003] Blanke, M., Kinnart, M., Lunze, J. and Staroswiecki, M. (2003). Diagnosis and Fault-Tolerant Control, Springer, Berlin/Heidelberg. | Zbl 1023.93001

[004] Boyd, S. and Barratt, C. (1991). Linear Controller Design - Limits of Performance, Prentice Hall, Upper Saddle River, NJ. | Zbl 0748.93003

[005] Campbell, S., Horton, K. and Nikoukhah, R. (2002). Auxiliary signal design for rapid multi-model identification using optimization, Automatica 38(8): 1313-1325. | Zbl 1010.93033

[006] Campbell, S., Horton, K., Nikoukhah, R. and Delebecque, F. (2000). Rapid model selection and the separability index, Proceedings of Safeprocess 2000, Budapest, Hungary, pp. 1187-1192.

[007] Campbell, S. and Nikoukhah, R. (2004a). Auxiliary Signal Design for Failure Detection, Princeton University Press, Princeton, NJ. | Zbl 1055.94036

[008] Campbell, S. and Nikoukhah, R. (2004b). Software for auxiliary signal design, Proceedings of the American Control Conference, Boston, MA, USA, pp. 4414-4419.

[009] Frank, P. and Ding, X. (1994). Frequency domain approach to optimally robust residual generation and evaluation for model-based fault diagnosis, Automatica 30(5): 789-804. | Zbl 0799.93018

[010] Gustafsson, F. (2000). Adaptive Filtering and Change Detection, Wiley & Sons, Chichester.

[011] Kerestecioglu, F. (1993). Change Detection and Input Design in Dynamic Systems, Research Studies Press, Baldock, Hertfordshire. | Zbl 0842.93004

[012] Kerestecioglu, F. and Zarrop, M. (1994). Input design for detection of abrupt changes in dynamical systems, International Journal of Control 59(4): 1063-1084. | Zbl 0808.93063

[013] Maciejowski, J. (1989). Multivariable Feedback Control, Addison Wesley, Boston, MA. | Zbl 0691.93001

[014] Massoumnia, M. (1986). A geometric approach to the synthesis of failure detection filters, IEEE Transactions on Automatic Control 31(9): 839-846. | Zbl 0599.93017

[015] Niemann, H. (2003). Dual Youla parameterization, IEE Proceedings-Control Theory and Applications 150(5): 493-497.

[016] Niemann, H. (2005). Fault tolerant control based on active fault diagnosis, Proceedings of the American Control Conference, Portland, OR, USA, pp. 2224-2229.

[017] Niemann, H. (2006a). Parameterization of extended systems, IEE Proceedings-Control Theory and Applications 153(2): 221-227.

[018] Niemann, H. (2006b). A setup for active fault diagnosis, IEEE Transactions on Automatic Control 51(9): 1572-1578.

[019] Niemann, H. and Poulsen, N. (2006). Fault tolerant control for uncertain systems with parametric faults, Preprints of the 6th IFAC Symposium on Fault Detection, Supervision ans Safety for Technical Processes, SAFEPROCESS'2006, Beijing, China, pp. 517-522.

[020] Niemann, H. and Poulsen, N. (2009a). Controller architectures for switching, Proceedings of the American Control Conference, St. Louis, MO, USA, pp. 1098-1103.

[021] Niemann, H. and Poulsen, N. (2009b). A concept for fault tolerant controllers, in Z. Kowalczuk (Ed.) Diagnosis of Processes and Systems, Pomeranian Science and Technology Publishers PWNT, Gdańsk, pp. 107-114.

[022] Niemann, H. and Stoustrup, J. (2002). Reliable control using the primary and dual Youla parameterization, Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, NV, USA, pp. 4353-4358.

[023] Niemann, H. and Stoustrup, J. (2005). An architecture for fault tolerant controllers, International Journal of Control 78(14): 1091-1110. | Zbl 1121.93050

[024] Niemann, H., Stoustrup, J. and Abrahamsen, R. (2004). Switching between multivariable controllers, Optimal Control - Application and Methods 25(2): 51-66. | Zbl 1073.93561

[025] Nikoukhah, R. (1994). Innovations generation in the presence of unknown inputs: Application to robust failure detection, Automatica 30(12): 1851-1867. | Zbl 0815.93080

[026] Nikoukhah, R. (1998). Guaranteed active failure detection and isolation for linear dynamical systems, Automatica 34(11): 1345-1358. | Zbl 0961.93006

[027] Nikoukhah, R., Campbell, S. and Delebecque, F. (2000). Detection signal design for failure detection: A robust approach, International Journal of Adaptive Control and Signal Processing 14(7): 701-724. | Zbl 0988.93078

[028] Poulsen, N. and Niemann, H. (2008). Active fault diagnosis based on stochastic tests, International Journal of Applied Mathematics and Computer Science 18(4): 487-496, DOI: 10.2478/v10006-008-0043-6. | Zbl 1155.93427

[029] Saberi, A., Stoorvogel, A., Sannuti, P. and Niemann, H. (2000). Fundamental problems in fault detection and identification, International Journal of Robust and Nonlinear Control 10(14): 1209-1236. | Zbl 0967.93037

[030] Skogestad, S. and Postlethwaite, I. (2005). Multivariable Feedback Control: Analysis and Design, Wiley, Hoboken, NJ. | Zbl 0883.93001

[031] Stoorvogel, A., Niemann, H. and Saberi, A. (2001). Delays in fault detection and isolation, Proceedings of the American Control Conference, Washington, DC, USA, pp. 459-463.

[032] Stoustrup, J. and Niemann, H. (2001). Fault tolerant feedback control using the Youla parameterization, Proceedings of the 6th European Control Conference, Porto, Portugal, pp. 1970-1974.

[033] Tay, T., Mareels, I. and Moore, J. (1997). High Performance Control, Birkhäuser, Boston, MA. | Zbl 0889.93001

[034] Zhang, X. (1989). Auxiliary Signal Design in Fault Detection and Diagnosis, Springer-Verlag, Heidelberg. | Zbl 0679.68207

[035] Zhou, K., Doyle, J. and Glover, K. (1995). Robust and optimal control, Prentice Hall, Upper Saddle Rider, NJ. | Zbl 0999.49500

[036] Zhou, K. and Ren, Z. (2001). A new controller architecture for high performance robust, and fault-tolerant control, IEEE Transactions on Automatic Control 46(10): 1613-1618. | Zbl 1026.93019