Fault-tolerant control strategy for actuator faults using LPV techniques: Application to a two degree of freedom helicopter
Saúl Montes de Oca ; Vicenç Puig ; Marcin Witczak ; Łukasz Dziekan
International Journal of Applied Mathematics and Computer Science, Tome 22 (2012), p. 161-171 / Harvested from The Polish Digital Mathematics Library

In this paper, a Fault Tolerant Control (FTC) strategy for Linear Parameter Varying (LPV) systems that can be used in the case of actuator faults is proposed. The idea of this FTC method is to adapt the faulty plant instead of adapting the controller to the faulty plant. This approach can be seen as a kind of virtual actuator. An integrated FTC design procedure for the fault identification and fault-tolerant control schemes using LPV techniques is provided as well. Fault identification is based on the use of an Unknown Input Observer (UIO). The FTC controller is implemented as a state feedback controller and designed using polytopic LPV techniques and Linear Matrix Inequality (LMI) regions in such a way as to guarantee the closed-loop behavior in terms of several LMI constraints. To assess the performance of the proposed approach, a two degree of freedom helicopter is used.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:208092
@article{bwmeta1.element.bwnjournal-article-amcv22i1p161bwm,
     author = {Sa\'ul Montes de Oca and Vicen\c c Puig and Marcin Witczak and \L ukasz Dziekan},
     title = {Fault-tolerant control strategy for actuator faults using LPV techniques: Application to a two degree of freedom helicopter},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {22},
     year = {2012},
     pages = {161-171},
     zbl = {1273.93049},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv22i1p161bwm}
}
Saúl Montes de Oca; Vicenç Puig; Marcin Witczak; Łukasz Dziekan. Fault-tolerant control strategy for actuator faults using LPV techniques: Application to a two degree of freedom helicopter. International Journal of Applied Mathematics and Computer Science, Tome 22 (2012) pp. 161-171. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv22i1p161bwm/

[000] Apkarian, P., Gahinet, P. and Becker, G. (1995). Self-scheduled H control of linear parameter-varying systems: A design example, Automatica 31(9): 1251-1261. | Zbl 0825.93169

[001] Banerjee, A., Arkun, Y., Pearson, R. and Ogunnaike, B. (1995). H control of nonlinear processes using multiple linear models, Proceedings of the European Control Conference, Rome, Italy, pp. 2671-2676.

[002] Biannic, J.M. (1996). Commande Robuste des Systèmes à Paramètres Variables. Application en Aéronautique, Ph.D. thesis, Study and Research Centre of Toulouse, DERA Department, Toulouse.

[003] Blanke, M., Izadi-Zamanabadi, R., Bogh, S.A. and Lunau, C.P. (1997). Fault-tolerant control systems-A holistic view, Control Engineering Practice 5(5): 693-702.

[004] Blanke, M., Kinnaert, M., Lunze, J. and Staroswiecki, M. (2006). Diagnosis and Fault-Tolerant Control, Springer-Verlag, Berlin/Heidelberg. | Zbl 1126.93004

[005] Chen, J., Patton, R.J. and Chen, Z. (1998). An LMI approach to fault-tolerant control of uncertain systems, IEEE International Symposium on Intelligent Control, Gaithersburg, MD, USA, Vol. 1, pp. 175-180.

[006] Chilali, M. and Gahinet, P. (1996). H design with pole placement constraints: An LMI approach, IEEE Transactions on Automatic Control 41(3): 358-367. | Zbl 0857.93048

[007] Dziekan, Ł. (2011). Neuro-Fuzzy-Based Takagi-Sugeno Modelling in Fault-Tolerant Control, Lecture Notes in Control and Computer Science, Vol. 16, University of Zielona Góra Press, Zielona Góra. | Zbl 1291.93176

[008] Fee (1998). Twin Rotor MIMO System Advanced Teaching Manual 1 (33-007-4M5).

[009] Franklin, G.F., Powell, J.D. and Workman, M.L. (1997). Digital Control of Dynamic Systems, 3rd Edn., Addison Wesley Longman, London. | Zbl 0697.93002

[010] Ghersin, A.S. and Sanchez-Pena, R.S. (2002). LPV control of a 6-DOF vehicle, IEEE Transactions on Control Systems Technology 10(6): 883-887.

[011] Hallouzi, R., Verdult, V., Babuska, R. and Verhaegen, M. (2005). Fault detection and identification of actuator faults using linear parameter varying models, 16th IFAC Triennial World Congress, Prague, Czech Republic, pp. 119-124.

[012] Henrion, L.R.D., Bernussou, J. and Vary, F. (2005). LPV modeling of a turbofan engine, Preprints of the 16th World Congress of the International Federation of Automatic Control, Prague, Czech Republic, pp. 526-531.

[013] Hui, S. and Żak, S.H. (2005). Observer design for systems with unknown inputs, International Journal of Applied Mathematics and Computer Science 15(4): 101-117. | Zbl 1127.93018

[014] Leith, D. and Leithead, W. (1999). Survey of gainscheduling analysis design, International Journal of Control, 73(11): 1001-1025. | Zbl 1006.93534

[015] Liang, Y., Liaw, D. and Lee, T. (2000). Reliable control of nonlinear systems, IEEE Transactions on Automatic Control 45(4): 706-710. | Zbl 0969.49018

[016] Lunze, J. (2006). Control reconfiguration after actuator failures: The generalised virtual actuator, Proceedings of the 6th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS), Beijing, China, pp. 1309-1314.

[017] Maki, M., Jiang, J. and Hagino, K. (2004). A stability guaranteed active fault-tolerant control system against actuator failures, International Journal of Robust and Nonlinear Control 14(12): 1061-1077. | Zbl 1057.93018

[018] Murray-Smith, R. and Johansen, T.A. (1997). Multiple Model Approaches to Modelling and Control, Taylor and Francis, London.

[019] Patton, R.J. (1997). Fault-tolerant control systems: The 1997 situation, Proceedings of the IFAC Symposium: SAFEPROCESS'97, Hull, UK, Vol. 2, pp. 1033-1055.

[020] Qu, Z., Ihlefeld, C. M., Yufang, J. and Saengdeejing, A. (2003). Robust fault-tolerant self-recovering control of nonlinear uncertain systems, Automatica 39(10): 1763-1771. | Zbl 1054.93024

[021] Richter, J.H., Schlage, T. and Lunze, J. (2007). Control reconfiguration of a thermofluid process by means of a virtual actuator, IET Proceedings on Control Theory and Applications 1(6): 1606-1620.

[022] Rodrigues, M., Theilliol, D., Aberkane, S. and Sauter, D. (2007). Fault tolerant control design for polytopic LPV systems, International Journal of Applied Mathematics and Computer Science 17(1): 27-37, DOI: 10.2478/v10006-0070004-5. | Zbl 1122.93073

[023] Rodrigues, M., Theilliol, D., Medina, M. A. and Sauter, D. (2008). A fault detection and isolation scheme for industrial systems based on multiple operating models, Control Engineering Practice 16(2): 225-239.

[024] Rodrigues, M., Theilliol, D. and Sauter, D. (2005). Design of an active fault tolerant control and polytopic unknown input observer for systems described by a multi-model representation, 44th IEEE Conference on Decision and Control/European Control Conference ECC, Sevilla, Spain, pp. 3816-3820.

[025] Wan, Z. and Kothare, M.V. (2003). Efficient scheduled stabilizing output feedback model predictive control for constrained nonlinear systems, Proceedings of the American Control Conference, Denver, CO, USA, Vol. 1 (4-6), pp. 489-494. | Zbl 1036.93026

[026] Witczak, M., Dziekan, L., Puig, V. and Korbicz, J. (2007). An integrated design strategy for fault identification and fault-tolerant control for Takagi-Sugeno fuzzy systems, Preprints of the 17th World Congress of the International Federation of Automatic Control, Seoul, Korea, pp. 7387-7392.

[027] Zhang, Y. and Jiang, J. (2008). Bibliographical review on reconfigurable fault-tolerant control systems, Annual Reviews in Control 32(2): 229-252.

[028] Zhang, Y.M., Jiang, J., Yang, Z. and Hussain, D.M.A. (2005). Managing performance degradation in fault tolerant control systems, Preprints of the 16th IFAC Triennial World Congress, Prague, Czech Republic, pp. 424-429.