A Haar wavelet operational matrix is applied to fractional integration, which has not been undertaken before. The Haar wavelet approximating method is used to reduce the fractional Volterra and Abel integral equations to a system of algebraic equations. A global error bound is estimated and some numerical examples with smooth, nonsmooth, and singular solutions are considered to demonstrate the validity and applicability of the developed method.
@article{bwmeta1.element.bwnjournal-article-amcv21i3p535bwm, author = {Habibollah Saeedi and Nasibeh Mollahasani and Mahmoud Mohseni Moghadam and Gennady N. Chuev}, title = {An operational Haar wavelet method for solving fractional Volterra integral equations}, journal = {International Journal of Applied Mathematics and Computer Science}, volume = {21}, year = {2011}, pages = {535-547}, zbl = {1233.65100}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv21i3p535bwm} }
Habibollah Saeedi; Nasibeh Mollahasani; Mahmoud Mohseni Moghadam; Gennady N. Chuev. An operational Haar wavelet method for solving fractional Volterra integral equations. International Journal of Applied Mathematics and Computer Science, Tome 21 (2011) pp. 535-547. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv21i3p535bwm/
[000] Abdalkhania, J. (1990). Numerical approach to the solution of Abel integral equations of the second kind with nonsmooth solution, Journal of Computational and Applied Mathematics 29(3): 249-255.
[001] Akansu, A.N. and Haddad, R.A. (1981). Multiresolution Signal Decomposition, Academic Press Inc., San Diego, CA. | Zbl 0947.94001
[002] Bagley, R.L. and Torvik, P.J. (1985). Fractional calculus in the transient analysis of viscoelastically damped structures, American Institute of Aeronautics and Astronautics Journal 23(6): 918-925. | Zbl 0562.73071
[003] Baillie, R.T. (1996). Long memory processes and fractional integration in econometrics, Journal of Econometrics 73(1): 5-59. | Zbl 0854.62099
[004] Baratella, P. and Orsi, A.P. (2004). New approach to the numerical solution of weakly singular Volterra integral equations, Journal of Computational and Applied Mathematics 163(2): 401-418. | Zbl 1038.65144
[005] Brunner, H. (1984). The numerical solution of integral equations with weakly singular kernels, in D.F. GriMths (Ed.), Numerical Analysis, Lecture Notes in Mathematics, Vol. 1066, Springer, Berlin, pp. 50-71. | Zbl 0543.65090
[006] Chen, C.F. and Hsiao, C.H. (1997). Haar wavelet method for solving lumped and distributed parameter systems, IEE Proceedings: Control Theory and Applications 144(1): 87-94. | Zbl 0880.93014
[007] Chena, W., Suna, H., Zhang, X. and Korŏsak, D. (2010). Anomalous diffusion modeling by fractal and fractional derivatives, Computers & Mathematics with Applications 59(5): 265-274.
[008] Chiodo, S., Chuev, G.N., Erofeeva, S.E., Fedorov, M.V., Russo, N. and Sicilia, E. (2007). Comparative study of electrostatic solvent response by RISM and PCM methods, International Journal of Quantum Chemistry 107: 265-274.
[009] Chow, T.S. (2005). Fractional dynamics of interfaces between soft-nanoparticles and rough substrates, Physics Letters A 342(1-2): 148-155.
[010] Chuev, G.N., Fedorov, M.V. and Crain, J. (2007). Improved estimates for hydration free energy obtained by the reference interaction site model, Chemical Physics Letters 448: 198-202.
[011] Chuev, G.N., Fedorov, M.V., Chiodo, S., Russo, N. and Sicilia, E. (2008). Hydration of ionic species studied by the reference interaction site model with a repulsive bridge correction, Journal of Computational Chemistry 29(14): 2406-2415.
[012] Chuev, G.N., Chiodo, S., Fedorov, M.V., Russo, N. and Sicilia, E. (2006). Quasilinear RISM-SCF approach for computing solvation free energy of molecular ions, Chemical Physics Letters 418: 485-489.
[013] Dixon, J. (1985). On the order of the error in discretization methods for weakly singular second kind Volterra integral equations with non-smooth solution, BIT 25(4): 624-634. | Zbl 0584.65091
[014] Hsiao, C.H. and Wu, S.P. (2007). Numerical solution of timevarying functional differential equations via Haar wavelets, Applied Mathematics and Computation 188(1): 1049-1058. | Zbl 1118.65077
[015] Lepik, Ü. and Tamme, E. (2004). Application of the Haar wavelets for solution of linear integral equations, Dynamical Systems and Applications, Proceedings, Antalya, Turkey, pp. 494-507.
[016] Lepik, Ü. (2009). Solving fractional integral equations by the Haar wavelet method, Applied Mathematics and Computation 214(2): 468-478. | Zbl 1170.65106
[017] Li, C. and Wang, Y. (2009). Numerical algorithm based on Adomian decomposition for fractional differential equations, Computers & Mathematics with Applications 57(10): 1672-1681. | Zbl 1186.65110
[018] Magin, R.L. (2004). Fractional calculus in bioengineering. Part 2, Critical Reviews in Bioengineering 32: 105-193.
[019] Mainardi, F. (1997). Fractional calculus: ‘Some basic problems in continuum and statistical mechanics', in A. Carpinteri and F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics, Springer-Verlag, New York, NY. | Zbl 0917.73004
[020] Mandelbrot, B. (1967). Some noises with 1/f spectrum, a bridge between direct current and white noise, IEEE Transactions on Information Theory 13: 289-298. | Zbl 0148.40507
[021] Maleknejad, K. and Mirzaee, F. (2005). Using rationalized Haar wavelet for solving linear integral equations, Applied Mathematics and Computation 160(2): 579-587. | Zbl 1067.65150
[022] Meral, F.C., Royston, T.J. and Magin, R. (2010). Fractional calculus in viscoelasticity: An experimental study, Communications in Nonlinear Science and Numerical Simulation 15(4): 939-945. | Zbl 1221.74012
[023] Metzler, R. and Nonnenmacher, T.F. (2003). Fractional relaxation processes and fractional rheological models for the description of a class of viscoelastic materials, International Journal of Plasticity 19(7): 941-959. | Zbl 1090.74673
[024] Miller, K. and Feldstein, A. (1971). Smoothness of solutions of Volterra integral equations with weakly singular kernels, SIAM Journal on Mathematical Analysis 2: 242-258. | Zbl 0217.15602
[025] Miller, K. and Ross, B. (1993). An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, New York, NY. | Zbl 0789.26002
[026] Pandey, R.K., Singh, O.P. and Singh, V.K. (2009). Efficient algorithms to solve singular integral equations of Abel type, Computers and Mathematics with Applications 57(4): 664-676. | Zbl 1165.45303
[027] Podlubny, I. (1999). Fractional Differential Equations, Academic Press, New York, NY. | Zbl 0924.34008
[028] Strang, G. (1989). Wavelets and dilation equations, SIAM Review 31(4): 614-627. | Zbl 0683.42030
[029] Vainikko, G. and Pedas, A. (1981). The properties of solutions of weakly singular integral equations, Journal of the Australian Mathematical Society, Series B: Applied Mathematics 22: 419-430. | Zbl 0475.65085
[030] Vetterli, M. and Kovacevic, J. (1995). Wavelets and Subband Coding, Prentice Hall, Englewood Cliffs, NJ. | Zbl 0885.94002
[031] Yousefi, S.A. (2006). Numerical solution of Abel's integral equation by using Legendre wavelets, Applied Mathematics and Computation 175(1): 574-580. | Zbl 1088.65124
[032] Zaman, K.B.M.Q. and Yu, J.C. (1995). Power spectral density of subsonic jetnoise, Journal of Sound and Vibration 98(4): 519-537.