Loading [MathJax]/extensions/MathZoom.js
New stability conditions for positive continuous-discrete 2D linear systems
Tadeusz Kaczorek
International Journal of Applied Mathematics and Computer Science, Tome 21 (2011), p. 521-524 / Harvested from The Polish Digital Mathematics Library

New necessary and sufficient conditions for asymptotic stability of positive continuous-discrete 2D linear systems are established. Necessary conditions for the stability are also given. The stability tests are demonstrated on numerical examples.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:208066
@article{bwmeta1.element.bwnjournal-article-amcv21i3p521bwm,
     author = {Tadeusz Kaczorek},
     title = {New stability conditions for positive continuous-discrete 2D linear systems},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {21},
     year = {2011},
     pages = {521-524},
     zbl = {1234.93090},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv21i3p521bwm}
}
Tadeusz Kaczorek. New stability conditions for positive continuous-discrete 2D linear systems. International Journal of Applied Mathematics and Computer Science, Tome 21 (2011) pp. 521-524. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv21i3p521bwm/

[000] Bistritz, Y. (2003). A stability test for continuous-discrete bivariate polynomials, Proceedings of the International Symposium on Circuits and Systems, Vol. 3, pp. 682-685.

[001] Busłowicz, M. (2010a). Stability and robust stability conditions for a general model of scalar continuous-discrete linear systems, Pomiary, Automatyka, Kontrola 56(2): 133-135.

[002] Busłowicz, M. (2010b). Robust stability of the new general 2D model of a class of continuous-discrete linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 58(4): 561-566. | Zbl 1225.34020

[003] Busłowicz, M. (2011). Improved stability and robust stability conditions for a general model of scalar continuousdiscrete linear systems, Pomiary, Automatyka, Kontrola 57(2): 188-189.

[004] Dymkov, M., Gaishun, I., Rogers, E., Gałkowski, K. and Owens, D.H. (2004). Control theory for a class of 2D continuousdiscrete linear systems, International Journal of Control 77 (9): 847-860. | Zbl 1060.93055

[005] Farina, L. and Rinaldi, S. (2000). Positive Linear Systems: Theory and Applications, J. Wiley, New York, NY. | Zbl 0988.93002

[006] Gałkowski, K., Rogers, E., Paszke, W. and Owens, D.H. (2003). Linear repetitive process control theory applied to a physical example, International Journal of Applied Mathematics and Computer Science 13 (1): 87-99. | Zbl 1046.93037

[007] Kaczorek, T. (1998). Reachability and minimum energy control of positive 2D continuous-discrete systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 46 (1): 85-93. | Zbl 1037.93050

[008] Kaczorek, T. (2002). Positive 1D and 2D Systems, Springer-Verlag, London. | Zbl 1005.68175

[009] Kaczorek, T. (2007). Positive 2D hybrid linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 55(4): 351-358.

[010] Kaczorek, T. (2008a). Positive fractional 2D hybrid linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 56 (3): 273-277.

[011] Kaczorek, T. (2008b). Realization problem for positive 2D hybrid systems, COMPEL 27 (3): 613-623. | Zbl 1148.93318

[012] Kaczorek, T. (2009). Stability of positive continuous-time linear systems with delays, Bulletin of the Polish Academy of Sciences: Technical Sciences 57(4): 395-398.

[013] Kaczorek, T., Marchenko, V. and Sajewski, Ł. (2008). Solvability of 2D hybrid linear systems-Comparison of the different methods, Acta Mechanica et Automatica 2(2): 59-66.

[014] Sajewski, Ł. (2009). Solution of 2D singular hybrid linear systems, Kybernetes 38 (7/8): 1079-1092. | Zbl 1325.93036

[015] Xiao, Y. (2001a). Stability test for 2-D continuous-discrete systems, Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, FL, USA, Vol. 4, pp. 3649-3654.

[016] Xiao, Y. (2001b). Robust Hurwitz-Schur stability conditions of polytopes of 2-D polynomials, Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, FL, USA, Vol. 4, pp. 3643-3648.

[017] Xiao, Y. (2003). Stability, controllability and observability of 2-D continuous-discrete systems, Proceedings of the International Symposium on Circuits and Systems, Bangkok, Thailand, Vol. 4, pp. 468-471.