This paper investigates the regional control problem for infinite dimensional bilinear systems. We develop an approach that characterizes the optimal control and leads to a numerical algorithm. The obtained results are successfully illustrated by simulations.
@article{bwmeta1.element.bwnjournal-article-amcv21i3p499bwm, author = {Karima Ztot and El Hassan Zerrik and Hamid Bourray}, title = {Regional control problem for distributed bilinear systems: Approach and simulations}, journal = {International Journal of Applied Mathematics and Computer Science}, volume = {21}, year = {2011}, pages = {499-508}, zbl = {1234.49033}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv21i3p499bwm} }
Karima Ztot; El Hassan Zerrik; Hamid Bourray. Regional control problem for distributed bilinear systems: Approach and simulations. International Journal of Applied Mathematics and Computer Science, Tome 21 (2011) pp. 499-508. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv21i3p499bwm/
[000] Ball, J.M., Marsden, J.E. and Slemrod, M. (1982). Controllability for distributed bilinear systems, SIAM Journal on Control and Optimization 20(4): 575-597. | Zbl 0485.93015
[001] Bradley, M.E. and Lenhart, S. (2001). Bilinear spatial control of the velocity term in a Kirchhoff plate equation, Electronic Journal of Differental Equations (27): 1-15. | Zbl 0974.49012
[002] El Alami, N. (1988). Algorithms for implementation of optimal control with quadratic criterion of bilinear systems, in A. Bensoussan and J.L. Lions (Eds.) Analysis and Optimization of Systems, Lecture Notes in Control and Information Sciences, Vol. 111, Springer-Verlag, London, pp. 432-444, (in French).
[003] El Jai, A., Simon, M.C., Zerrik, E. and Prirchard, A.J. (1995). Regional controllability of distributed parameter systems, International Journal of Control 62(6): 1351-1365. | Zbl 0844.93016
[004] Joshi, H.R. (2005). Optimal control of the convective velocity coefficient in a parabolic problem, Nonlinear Analysis 63 (5-7): 1383-1390. | Zbl 1224.49006
[005] Kato, T. (1995). Perturbation Theory for Linear Operators, Springer Verlag, Berlin/Heidelberg. | Zbl 0836.47009
[006] Khapalov, A.Y. (2002a). Global non-negative controllability of the semilinear parabolic equation governed by bilinear control, ESAIM: Control, Optimisation and Calculus of Variations 7: 269-283. | Zbl 1024.93026
[007] Khapalov, A.Y. (2002b) On bilinear controllability of the parabolic equation with the reaction-diffusion term satisfying Newton's, Journal of Computational and Applied Mathematics 21: 1-23. | Zbl 1119.93017
[008] Khapalov, A.Y. (2010). Controllability of Partial Differential Equations Governed by Multiplicative Controls, Lecture Notes in Mathematics, Vol. 1995, Springer, Berlin, p. 284. | Zbl 1210.93005
[009] Lenhart, S. and Liang, M. (2000). Bilinear optimal control for a wave equation with viscous damping, Houston Journal of Mathematics 26(3): 575-595. | Zbl 0976.49005
[010] Pazy, A. (1983). Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, NY. | Zbl 0516.47023
[011] Zerrik, E., Ouzahra, M. and Ztot, K. (2004). Regional stabilization for infinite bilinear systems, IEE: Control Theory and Applications 151(1): 109-116.
[012] Zerrik, E. and Kamal, A. (2007). Output controllability for semi linear distributed parabolic system, Journal of Dynamical and Control Systems 13(2): 289-306. | Zbl 1119.93022
[013] Zerrik, E., Larhrissi, R. and Bourray, H. (2007). An output controllability problem for semi linear distributed hyperbolic system, International Journal of Applied Mathematics and Computer Science 17(4): 437-448, DOI: 10.2478/v10006007-0035-y. | Zbl 1234.93023