Performance evaluation based fault tolerant control with actuator saturation avoidance
Boumedyen Boussaid ; Christophe Aubrun ; Mohamed Naceur Abdelkrim ; Mohamed Koni Ben Gayed
International Journal of Applied Mathematics and Computer Science, Tome 21 (2011), p. 457-466 / Harvested from The Polish Digital Mathematics Library

In this paper, a new approach regarding a reconfigured system is proposed to improve the performance of an active fault tolerant control system. The system performance is evaluated with an intelligent index of performance. The reconfiguration mechanism is based on a model predictive controller and reference trajectory management techniques. When an actuator fault occurs in the system, a new degraded reference trajectory is generated and the controller calculates new admissible controls. A constraint set and cost function are established to avoid actuator saturation and reduce the control energy spent in closed loop dynamics. The effectiveness of the proposed method is illustrated using a hydrothermal system subject to actuator faults and constraints on actuator dynamic ranges.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:208060
@article{bwmeta1.element.bwnjournal-article-amcv21i3p457bwm,
     author = {Boumedyen Boussaid and Christophe Aubrun and Mohamed Naceur Abdelkrim and Mohamed Koni Ben Gayed},
     title = {Performance evaluation based fault tolerant control with actuator saturation avoidance},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {21},
     year = {2011},
     pages = {457-466},
     zbl = {1235.93090},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv21i3p457bwm}
}
Boumedyen Boussaid; Christophe Aubrun; Mohamed Naceur Abdelkrim; Mohamed Koni Ben Gayed. Performance evaluation based fault tolerant control with actuator saturation avoidance. International Journal of Applied Mathematics and Computer Science, Tome 21 (2011) pp. 457-466. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv21i3p457bwm/

[000] Aubrun, C., De Cuypere, P. and Sauter, D. (2003). Design of a supervised control system for sludge dewatering process, Control Engineering Practice 11(1): 27-37.

[001] Bemporad, A. and Morari, M. (1999). Robust model predictive control: A survey, in A. Garulli, A. Tesi and A. Vicino (Eds.), Robustness in Identification and Control, Lecture Notes in Control and Information Sciences, Vol. 245, Springer, London, pp. 207-227. | Zbl 0979.93518

[002] Blanke, M., Kinnaert, M., Lunze, J. and Staroswiecki, M. (2006). Diagnosis and Fault-Tolerant Control, 2nd Edn., Control Systems Series, Springer-Verlag, Heidelberg. | Zbl 1126.93004

[003] Boussaid, B., Aubrun, C., Ben Gayed, K. and Abdelkrim, M. (2009). FTC approach based on predictive governor, Proceedings of the 7th IEEE International Conference on Control and Automation, ICCA 2009, Chrischurch, New Zealand, pp. 2088-2093.

[004] Boussaid, B., Hamdaoui, R., Aubrun, C., Bengayed, K. and Abdelkrim, N. (2008). A fault tolerant predictive control applied to hydro-thermal system, Proceedings of CIFA 2008, Bucarest, Romania, pp. 1-6.

[005] Cannon, M. and Kouvaritakis, B. (2005). Optimizing prediction dynamics for robust MPC, IEEE Transactions on Automatic Control 50(11): 1892-1897.

[006] Ding, B., Xi, Y. and Li, S. (2004). A synthesis approach of on-line constrained robust model predictive control, Automatica 40(1): 163-167. | Zbl 1037.93033

[007] Guerra, P., Puig, V. and Witczak, M. (2006). Robust fault detection with unknown input set-membership state estimators and interval models using zonotopes, Proceedings of the 6th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, SAFEPROCESS 2006, Beijing, China, pp. 1303-1308.

[008] Jiang, J. and Zhang, Y. (2002). Graceful performance degradation in active fault tolerant control systems, Proceedings of the 15th IFAC World Congress b'02, Barcelona, Spain.

[009] Jiang, J. and Zhang, Y. (2006). Accepting performance degradation in fault-tolerant control system design, IEEE Transactions on Control Systems Technology 14(2): 284-292.

[010] Korbicz, J., Kościelny, J., Kowalczuk, Z. and Choleva, W. (2004). Fault Diagnosis: Models, Artificial Intelligence, Applications, Springer-Verlag, Berlin/Heidelberg/New York, NY, p. 920.

[011] Lunze, J. and Richter, J. (2008). Reconfigurable fault-tolerant control: A tutorial introduction, European Journal of Control 14(5): 359-386. | Zbl 1293.93248

[012] Maciejowski, J. (2002). Predictive Control with Constraints, Prentice Hall, Harlow. | Zbl 0978.93002

[013] Marusak, P.M. and Tatjewski, P. (2008). Actuator fault tolerance in control systems with predictive constrained setpoint optimizers, International Journal of Applied Mathematics and Computer Science 18(4): 539-551, DOI: 10.2478/v10006-008-0047-2. | Zbl 1155.93357

[014] Noura, H., Theilliol, D., Ponsart, J. and Chamssedine, A. (2009). Fault-tolerant Control Systems: Design and Practical Applications, Advances in Industrial Control, Springer-Verlag, London. | Zbl 1215.93052

[015] Patton, R. (1997). Fault-tolerant control systems: The 1997 situation, Proceedings of the IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes, Kingston Upon Hull, UK, pp. 1033-1054.

[016] Puig, V. (2010). Fault diagnosis and fault tolerant control using set-membership approaches: Application to real case studies, International Journal of Applied Mathematics and Computer Science 20(4): 619-635, DOI: 10.2478/v10006010-0046-y. | Zbl 1214.93061

[017] Tatjewski, P. (2010). Supervisory predictive control and online set-point optimization, International Journal of Applied Mathematics and Computer Science 20(3): 483-495, DOI: 10.2478/v10006-010-0035-1. | Zbl 1211.93036

[018] Theilliol, D., Join, C. and Zhang, Y. (2008). Actuator fault tolerant control design based on a reconfigurable reference input, International Journal of Applied Mathematics and Computer Science 18(4): 553-560, DOI: 10.2478/v10006008-0048-1. | Zbl 1155.93402

[019] Theilliol, D., Zhang, Y. and Ponsart, J. (2009). Fault tolerant control system against actuator failures based on reconfiguring reference input, Proceedings of the International Conference on Advances in Computational Tools for Engineering Applications, Beyrout, Libanon, pp. 1-6.

[020] Zerz, E. (2008). Behavioral systems theory: A survey, International Journal of Applied Mathematics and Computer Science 18(3): 265-270, DOI: 10.2478/v10006-008-0024-9. | Zbl 1176.93001

[021] Zhang, Y. and Jiang, J. (2003). Bibliographical review on reconfigurable fault-tolerant control systems, Proceedings of the 5th IFAC Symposium on Fault Detection, Supervision and safety for Technical Processes, SAFEPROCESS 2003, Washington, DC, USA, pp. 265-276.

[022] Zhang, Y. and Jiang, J. (2008). Bibliographical review on reconfigurable fault-tolerant control systems, Annual Reviews in Control 32(2): 229-252.

[023] Zhang, Y., Jiang, J. and Thelliol, D. (2008). Incorporating performance degradation in fault tolerant control system design with multiple actuator failures, International Journal of Control, Automation, and Systems 6(3): 327-338.