Linear time-invariant networks are modelled by linear differential-algebraic equations with constant coefficients. These equations can be represented by a matrix pencil. Many publications on this subject are restricted to regular matrix pencils. In particular, the influence of the Weierstrass structure of a regular pencil on the poles of its inverse is well known. In this paper we investigate singular matrix pencils. The relations between the Kronecker structure of a singular matrix pencil and the multiplicity of poles at zero of the Moore-Penrose inverse and the Drazin inverse of the rational matrix are investigated. We present example networks whose circuit equations yield singular matrix pencils.
@article{bwmeta1.element.bwnjournal-article-amcv21i1p161bwm, author = {Klaus R\"obenack and Kurt Reinschke}, title = {On generalized inverses of singular matrix pencils}, journal = {International Journal of Applied Mathematics and Computer Science}, volume = {21}, year = {2011}, pages = {161-172}, zbl = {1221.93096}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv21i1p161bwm} }
Klaus Röbenack; Kurt Reinschke. On generalized inverses of singular matrix pencils. International Journal of Applied Mathematics and Computer Science, Tome 21 (2011) pp. 161-172. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv21i1p161bwm/
[000] Ayasun, S., Nwankpa, C.O. and Kwatny, H.G. (2004). Computation of singular and singularity induced bifurcation points of differential-algebraic power system model, IEEE Transactions on Circuits and Systems I 51(8): 1558. | Zbl 1082.65558
[001] Bandler, J.W. and Zhang, Q.J. (1986). Large change sensitivity analysis in linear systems using generalized householder formulae, International Journal of Circuit Theory and Applications 14(2): 89-101.
[002] Beelen, T. and van Dooren, P. (1988). An improved algorithm for the computation of Kronecker's canonical form of a singular pencil, Linear Algebra and Its Applications 105: 9-65. | Zbl 0645.65022
[003] Ben-Israel, A. and Greville, T.N.E. (1974). Generalized Inverses: Theory and Applications, Wiley-Interscience, New York, NY. | Zbl 0305.15001
[004] Boullion, T.L. and Odell, P.L. (1971). Generalized Inverse Matrices, Wiley-Interscience, New York, NY. | Zbl 0223.15002
[005] Brenan, K.E., Campbell, S.L. and Petzold, L.R. (1996). Numerical Solution of Initial-Value Problems in DifferentialAlgebraic Equations, 2nd Edn., SIAM, Philadelphia, PA. | Zbl 0844.65058
[006] Bunse-Gerstner, A., Byers, R., Mehrmann, V. and Nichols, N.K. (1991). Numerical computation of an analytic singular value decomposition of a matrix valued function, Numerische Mathematik 60(1): 1-39. | Zbl 0743.65035
[007] Campbell, S.L. and Meyer, C.D. (1979). Generalized Inverses of Linear Transformations, Dover Publications, New York, NY. | Zbl 0417.15002
[008] Davies, A.C. (1966). Topological solution of networks containing nullators and norators, Electronics Letters 2(3): 90-92.
[009] Demmel, J. and Kågström, B. (1993). The generalized Schur decomposition of an arbitrary pencil λA-B, ACM Transactions on Mathematical Software 19(2): 160-174.
[010] Dziurla, B. and Newcomb, R. (1989). Input-output pairing in LTV semistate systems, IEEE Transactions on Circuits and Systems 36(1): 139-141.
[011] Dziurla, B. and Newcomb, R.W. (1987). Nonregular semistate systems: Examples and input-output pairing, Proceedings of the IEEE Conference on Decision and Control, Los Angeles, CA, USA, pp. 1125-1126.
[012] Estévez Schwarz, D. and Tischendorf, C. (2000). Structural analysis of electric circuits and consequences for MNA, International Journal of Circuit Theory and Applications 28(2): 131-162. | Zbl 1054.94529
[013] Fosséprez, M. (1992). Non-linear Circuits-Qualitative Analysis of Non-linear, Non-reciprocal Circuits, Wiley, Chichester.
[014] Gantmacher, F.R. (1959). Theory of Matrices, Vol. II, Chelsea, New York, NY. | Zbl 0085.01001
[015] Gear, C.W. (1971). Simultaneous numerical solution of differential-algebraic equations, IEEE Transactions on Circuit Theory 18(1): 89-95.
[016] Gear, C.W. and Petzold, L.R. (1982). Differential/algebraic systems and matrix pencils, in B. Kågström and A. Ruhe (Eds.), Matrix Pencils, Lecture Notes in Mathematics, Vol. 973, Springer-Verlag, New York, NY, pp. 75-89. | Zbl 0494.65038
[017] Gear, C.W. and Petzold, L.R. (1984). ODE methods for the solution of differential/algebraic systems, SIAM Journal on Numerical Analysis 21(4): 717-728. | Zbl 0557.65053
[018] Griepentrog, E. and März, R. (1986). Differential-Algebraic Equations and Their Numerical Treatment, Teubner-Texte zur Mathematik, Vol. 88, Teubner Verlagsgesellschaft, Leipzig. | Zbl 0629.65080
[019] Günther, M. and Feldmann, U. (1999a). CAD-based electriccircuit modeling in industry, I: Mathematical structure and index of network equations, Surveys on Mathematics for Industry 8: 97-129. | Zbl 0923.65039
[020] Günther, M. and Feldmann, U. (1999b). CAD-based electriccircuit modeling in industry, II: Impact of circuit configurations and parameters, Surveys on Mathematics for Industry 8: 131-157. | Zbl 0923.65040
[021] Hairer, E., Lubich, C. and Roche, M. (1989). The Numerical Solution of Differential-Algebraic Systems by RungeKutta Methods, Lecture Notes in Mathematics, Vol. 1409, Springer-Verlag, Berlin. | Zbl 0683.65050
[022] Hasler, M. (1986). Non-linear non-reciprocal resistive circuits with a structurally unique solution, International Journal of Circuit Theory and Applications 14(3): 237-262. | Zbl 0621.94022
[023] Hayton, G.E., Pugh, A.C. and Fretwell, P. (1988). Infinite elementary divisors of a matrix polynomial and implications, International Journal of Control 47(1): 53-64. | Zbl 0661.93016
[024] Hou, M. (1995). Descriptor Systems: Observers and Fault Diagnosis, Fortschrittsberichte, Reihe 8: Meß-, Steuerungsund Regelungstechnik, Vol. 482, VDI Verlag, Düsseldorf.
[025] Hou, M. and Müller, P.C. (1992). A singular matrix pencil theory for linear descriptor systems, Proceedings of the Symposium on Implicit and Nonlinear Systems, Ft Worth, TX, USA, pp. 178-190.
[026] Hou, M., Pugh, A.C. and Hayton, G.E. (1997). Generalized transfer functions and input-output equivalence, International Journal of Control 68(5): 1163-1178. | Zbl 0891.93010
[027] Karcanias, N. (1987). On the characteristic, Weyr sequences, the Kronecker invariants and canonical form of a singular pencil, in R. Isermann (Ed.), Preprint from Automatic Control World Congress, Pergamon Press, Munich, pp. 109-114.
[028] Karcanias, N. and Hayton, G.E. (1981). Generalized autonomous dynamical systems, algebraic duality and geometric theory, in H. Akashi (Ed.), Preprint from Automatic Control World Congress, Pergamon Press, Kyoto, pp. 289-294.
[029] Kronecker, L. (1890). Algebraic reduction of pencils of bilinear forms, Sitzungsberichte der Preussischen Akademie der Wissenschaften, pp. 1225-1237, (in German). | Zbl 22.0169.01
[030] Kublanovskaya, V.N. (1983). Analysis of singular matrix pencils, Journal of Mathematical Sciences 23(1): 1939-1950. | Zbl 0515.65031
[031] Kunkel, P. and Mehrmann, V. (1990). Numerical solution of differential algebraic Riccati equations, Linear Algebra and Its Applications 137/138: 39-66. | Zbl 0707.65043
[032] Kunkel, P. and Mehrmann, V. (2006). Differential-Algebraic Equations: Analysis and Numerical Solution, EMS Publishing House, Zürich. | Zbl 1095.34004
[033] Kunkel, P., Mehrmann, V., Rath, W. and Weickert, J. (1997). A new software package for linear differentialalgebraic equations, SIAM Journal on Scientific Computing 18(1): 115-138. | Zbl 0868.65041
[034] Kwatny, H.G., Fischl, R.F. and Nwankpa, C.O. (1995). Local bifurcation in power systems: Theory, computation, and application, Proceedings of the IEEE 83(11): 1456-1483.
[035] Marszalek, W. and Trzaska, Z.W. (2005). Singularity-induced bifurcations in electrical power systems, IEEE Transactions on Power Systems 20(1): 312-320.
[036] Mehrmann, V.L. (1991). The Autonomous Linear Quadratic Control Problem, Lecture Notes in Control and Information Science, Vol. 163, Springer-Verlag, Berlin. | Zbl 0746.93001
[037] Meyer, C.D. and Rose, N.J. (1977). The index and the Drazin inverse of block triangular matrices, SIAM Journal on Applied Mathematics 33(1): 1-7. | Zbl 0355.15009
[038] Müller, P.C. (2005). Remark on the solution of linear timeinvariant descriptor systems, Proceedings in Applied Mathematics and Mechanics 5(1): 175-176.
[039] Özcaldiran, K. and Lewis, F.L. (1990). On the regularizability of singular systems, IEEE Transactions on Automatic Control 35(10): 1156-1160. | Zbl 0724.93011
[040] Pandolfi, L. (1981). On the regulator problem for linear degenerate control systems, Journal of Optimization Theory and Applications 33(2): 243-254. | Zbl 0421.93036
[041] Penrose, R. (1955). A generalized inverse for matrices, Proceedings of the Cambridge Philosophical Society 51: 406-413. | Zbl 0065.24603
[042] Rao, C.R. and Mitra, S.K. (1971). Generalized Inverse of Matrices and Its Applications, John Wiley & Sons, New York, NY. | Zbl 0236.15004
[043] Reinschke, K. and Schwarz, P. (1976). Methods for ComputerAided Analysis of Linear Networks, Elektronisches Rechnen und Regeln, Vol. 9, Akademie-Verlag, Berlin, (in German).
[044] Reißig, G. (1996). Differential-algebraic equations and impasse points, IEEE Transactions on Circuits and Systems I 43(3): 122-133.
[045] Reißig, G. (1998). Contributions to the Theory and Applications of Implicit Differential Equations, Ph.D. thesis, Technische Universität Dresden, Dresden, (in German). | Zbl 0936.34001
[046] Reißig, G. (1999). Extension of the normal tree method, International Journal of Circuit Theory and Applications 27(2): 241-265. | Zbl 0921.68004
[047] Reißig, G. and Boche, H. (2003). On singularities of autonomous implicit ordinary differential equations, IEEE Transactions on Circuits and Systems I 50(7): 922-931.
[048] Reißig, G. and Feldmann, U. (1996). Computing the generic index of the circuit equations of linear active networks, Proceedings of the International Symposium on Circuits and Systems, Atlanta, GA, USA, Vol. III, pp. 190-193.
[049] Riaza, R. (2004). A matrix pencil approach to the local stability analysis of non-linear circuits, International Journal of Circuit Theory and Applications 32(1): 23-46. | Zbl 1037.94556
[050] Riaza, R. (2006). Time-domain properties of reactive dual circuits, International Journal of Circuit Theory and Applications 34(3): 317-340. | Zbl 1123.94410
[051] Riaza, R. (2008). Differential-Algebraic Systems: Analytical Aspects and Circuit Applications, World Scientific, River Edge, NJ. | Zbl 1184.34004
[052] Röbenack, K. (1999). Contribution to the Analysis of Descriptor Systems, Shaker-Verlag, Aachen, (in German). | Zbl 0947.93506
[053] Röbenack, K. and Reinschke, K.J. (1998). Digraph based determination of Jordan block size structure of singular matrix pencils, Linear Algebra and Its Applications 275-276: 495-507. | Zbl 0934.15012
[054] Röbenack, K. and Reinschke, K.J. (2000). Structural analysis of the input-output behaviour of singular descriptor systems, Workshop über Deskriptorsysteme, Paderborn, Germany, (in German). | Zbl 0966.93027
[055] Sannuti, P. (1981). Singular perturbations in the state space approach of linear electrical networks, International Journal of Circuit Theory and Applications 9(1): 47-57. | Zbl 0455.94028
[056] Sincovec, R.F., Erisman, A.M., Yip, E.L. and Epton, M.A. (1981). Analysis of descriptor systems using numerical algorithms, IEEE Transactions on Automatic Control 26(1): 139-147. | Zbl 0495.93027
[057] Straube, B., Reinschke, K., Vermeiren, W., Röbenack, K., Müller, B. and Clauß, C. (2001). DAE-index increase in analogue fault simulation, in R. Merker and W. Schwarz (Eds.), System Design Automation-Fundamentals, Principles, Methods, Examples, Kluwer, Boston, MA, pp. 221-232.
[058] Tischendorf, C. (1996). Graph-theoretic determination of the structural index of algebraic-differential equations in network analysis in W. Mathis and P. Noll (Eds.), Neue Anwendungen theoretischer Konzepte in der Elektrotechnik mit Gedenksitzung zum 50. Todestag von Wilhelm Cauer, VDE-Verlag, Berlin, pp. 55-60, (in German).
[059] Tischendorf, C. (1999). Topological index calculation of DAEs in circuit simulation, Surveys on Mathematics for Industry 8(3-4): 187-199. | Zbl 1085.94513
[060] van Dooren, P.M. (1981). The generalized eigenstructure problem in linear system theory, IEEE Transactions on Automatic Control 26(1): 111-129. | Zbl 0462.93013
[061] Vardulakis, A.I.G. and Karcanias, N. (1983). Relations between strict equivalence invariants and structure at infinity of matrix pencils, IEEE Transactions on Automatic Control 28(4): 514-516. | Zbl 0519.93025
[062] Vardulakis, A.I.G., Limebeer, D.N.J. and Karcanias, N. (1982). Structure and Smith-MacMillan form of a rational matrix at infinity, International Journal of Control 35(4): 701-725. | Zbl 0495.93010
[063] Varga, A. (1998). Computation of inner-outer factorization of rational matrices, IEEE Transactions on Automatic Control 43(5): 684-688. | Zbl 0907.65020
[064] Varga, A. (2001). Computing generalized inverse systems using matrix pencil methods, International Journal of Applied Mathematics and Computer Science 11(5): 1055-1068. | Zbl 1031.93071
[065] Weierstrass, K. (1868). On the theory of bilinear and quadratic forms, Monatsbericht der Preussischen Akademie der Wissenschaften, reprinted in Mathematische Werke von Karl Weierstrass, Vol. II, 1985, Mayer & Müller, Berlin, pp. 310-338, (in German). | Zbl 01.0054.04
[066] Wilkinson, J.H. (1979). Kronecker's canonical form and the QZ-algorithm, Linear Algebra and Its Applications 28: 285-303. | Zbl 0458.65022