On-line wavelet estimation of Hammerstein system nonlinearity
Przemysław Śliwiński
International Journal of Applied Mathematics and Computer Science, Tome 20 (2010), p. 513-523 / Harvested from The Polish Digital Mathematics Library

A new algorithm for nonparametric wavelet estimation of Hammerstein system nonlinearity is proposed. The algorithm works in the on-line regime (viz., past measurements are not available) and offers a convenient uniform routine for nonlinearity estimation at an arbitrary point and at any moment of the identification process. The pointwise convergence of the estimate to locally bounded nonlinearities and the rate of this convergence are both established.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:208004
@article{bwmeta1.element.bwnjournal-article-amcv20i3p513bwm,
     author = {Przemys\l aw \'Sliwi\'nski},
     title = {On-line wavelet estimation of Hammerstein system nonlinearity},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {20},
     year = {2010},
     pages = {513-523},
     zbl = {1211.93045},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv20i3p513bwm}
}
Przemysław Śliwiński. On-line wavelet estimation of Hammerstein system nonlinearity. International Journal of Applied Mathematics and Computer Science, Tome 20 (2010) pp. 513-523. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv20i3p513bwm/

[000] Billings, S.A. and Fakhouri, S.Y. (1978). Theory of separable processes with application to the identification of nonlinear systems, Proceedings of IEE 125(10): 1051-1058.

[001] Capobianco, E. (2002). Hammerstein system representation of financial volatility processes, The European Physical Journal B-Condensed Matter 27(2): 201-211.

[002] Chen, H.-F. (2004). Pathwise convergence of recursive identification algorithms for Hammerstein systems, IEEE Transactions on Automatic Control 49(10): 1641-1649.

[003] Chen, H.-F. (2005). Strong consistency of recursive identification for Hammerstein systems with discontinuous piecewise-linear memoryless block, IEEE Transactions on Automatic Control 50(10): 1612-1617.

[004] Chen, S., Billings, S.A. and Luo, W. (1989). Orthogonal least squares methods and their application to non-linear system identification, International Journal of Control 50(5): 1873-1896. | Zbl 0686.93093

[005] Coca, D. and Billings, S. A. (2001). Non-linear system identification using wavelet multiresolution models, International Journal of Control 74(18): 1718-1736. | Zbl 1024.93061

[006] Daubechies, I. (1992). Ten Lectures on Wavelets, SIAM, Philadelphia, PA. | Zbl 0776.42018

[007] Donoho, D.L. (1993). Unconditional bases are optimal bases for data compression and for statistical estimation, Applied and Computational Harmonic Analysis 1(1): 100-115. | Zbl 0796.62083

[008] Donoho, D.L., Vetterli, M., DeVore, R.A. and Daubechies, I. (1998). Data compression and harmonic analysis, IEEE Transactions on Infromation Theory 44(6): 2435-2476. | Zbl 1125.94311

[009] Giannakis, G.B. and Serpedin, E. (2001). A bibliography on nonlinear system identification, Signal Processing 81(3): 533-580. | Zbl 1079.93500

[010] Greblicki, W. (1989). Nonparametric orthogonal series identification of Hammerstein systems, International Journal of Systems Science 20(12): 2355-2367. | Zbl 0688.93062

[011] Greblicki, W. (2001). Recursive identification of Wiener systems, International Journal of Applied Mathematics and Computer Science 11(4): 977-991. | Zbl 1001.93085

[012] Greblicki, W. (2002). Stochastic approximation in nonparametric identification of Hammerstein systems, IEEE Transactions on Automatic Control 47(11): 1800-1810.

[013] Greblicki, W. and Pawlak, M. (1985). Fourier and Hermite series estimates of regression function, Annals of the Institute of Statistical Mathematics 37(3): 443-454. | Zbl 0623.62029

[014] Greblicki, W. and Pawlak, M. (1986). Identification of discrete Hammerstein system using kernel regression estimates, IEEE Transactions on Automatic Control 31(1): 74-77. | Zbl 0584.93066

[015] Greblicki, W. and Pawlak, M. (1989). Recursive nonparametric identification of Hammerstein systems, Journal of the Franklin Institute 326(4): 461-481. | Zbl 0687.93074

[016] Greblicki, W. and Pawlak, M. (1994). Nonparametric recovering nonlinearities in block oriented systems with the help of Laguerre polynomials, Control-Theory and Advanced Technology 10(4): 771-791.

[017] Greblicki, W. and Pawlak, M. (2008). Nonparametric System Identification, Cambridge University Press, New York, NY. | Zbl 1172.93001

[018] Györfi, L., Kohler, M., Krzyżak, A. and Walk, H. (2002). A Distribution-Free Theory of Nonparametric Regression, Springer-Verlag, New York, NY. | Zbl 1021.62024

[019] Haber, R. and Keviczky, L. (1999). Nonlinear System Parameter Identification, Kluwer Academic Publishers, Dordrecht/Boston/London. | Zbl 0934.93004

[020] Hasiewicz, Z., Pawlak, M. and Śliwiński, P. (2005). Nonparametric identification of non-linearities in blockoriented complex systems by orthogonal wavelets with compact support, IEEE Transactions on Circuits and Systems I: Regular Papers 52(1): 427-442.

[021] Hasiewicz, Z. and Śliwiński, P. (2002). Identification of nonlinear characteristics of a class of block-oriented non-linear systems via Daubechies wavelet-based models, International Journal of Systems Science 33(14): 1121-1144. | Zbl 1060.93034

[022] Hsu, K., Poolla, K. and Vincent, T.L. (2008). Identification of structured nonlinear systems, IEEE Transactions on Automatic Control 53(11): 2497-2513.

[023] Jang, W. and Kim, G. (1994). Identification of loudspeaker nonlinearities using the NARMAX modelling technique, Journal of Audio Engineering Society 42(1/2): 50-59.

[024] Jyothi, S. N. and Chidambaram, M. (2000). Identification of Hammerstein model for bioreactors with input multiplicities, Bioprocess Engineering 23(4): 323-326.

[025] Kang, H.W., Cho, Y.S. and Youn, D. H. (1999). On compensating nonlinear distortions of an OFDM system using an efficient adaptive predistorter, IEEE Transactions on Communications 47(4): 522-526.

[026] Kukreja, S., Kearney, R. and Galiana, H. (2005). A least-squares parameter estimation algorithm for switched Hammerstein systems with applications to the VOR, IEEE Transactions on Biomedical Engineering 52(3): 431-444.

[027] Lang, Z.Q. (1997). A nonparametric polynomial identification algorithm for the Hammerstein system, IEEE Transactions on Automatic Control 42(2): 1435-1441. | Zbl 0894.93013

[028] Lortie, M. and Kearney, R.E. (2001). Identification of timevarying Hammerstein systems from ensemble data, Annals of Biomedical Engineering 29(2): 619-635.

[029] Mallat, S.G. (1998). A Wavelet Tour of Signal Processing, Academic Press, San Diego, CA. | Zbl 0937.94001

[030] Marmarelis, V.Z. (2004). Nonlinear Dynamic Modeling of Physiological Systems, IEEE Press Series on Biomedical Engineering, Wiley IEEE Press, Piscataway, NJ.

[031] Mzyk, G. (2007). Generalized kernel regression estimate for Hammerstein system identification, International Journal of Applied Mathematics and Computer Science 17(2): 101-109, DOI: 10.2478/v10006-007-0018-z. | Zbl 1119.93416

[032] Mzyk, G. (2009). Nonlinearity recovering in Hammerstein system from short measurement sequence, IEEE Signal Processing Letters 16(9): 762-765.

[033] Nešić, D. and Mareels, I. M.Y. (1998). Dead-beat control of simple Hammerstein models, IEEE Transactions on Automatic Control 43(8): 1184-1188. | Zbl 0957.93036

[034] Niedźwiecki, M. (1988). Functional series modeling approach to identification of nonstationary stochastic systems, IEEE Transactions on Automatic Control 33(10): 955-961. | Zbl 0655.93074

[035] Nordsjo, A. and Zetterberg, L. (2001). Identification of certain time-varying nonlinear Wiener and Hammerstein systems, IEEE Transactions on Signal Processing 49(3): 577-592.

[036] Pawlak, M. and Hasiewicz, Z. (1998). Nonlinear system identification by the Haar multiresolution analysis, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 45(9): 945-961. | Zbl 0952.93021

[037] Rutkowski, L. (1980). Sequential estimates of probability densities by orthogonal series and their application in pattern classification, IEEE Transactions on System, Man, and Cybernetics 10(12): 918-920. | Zbl 0478.62067

[038] Rutkowski, L. (1982). On-line identification of time-varying systems by nonparametric techniques, IEEE Transactions on Automatic Control 27(1): 228-230. | Zbl 0476.93074

[039] Rutkowski, L. (2004). Generalized regression neural networks in time-varying environment, IEEE Transactions on Neural Networks 15(3): 576-596.

[040] Śliwiński, P. and Hasiewicz, Z. (2008). Computational algorithms for wavelet identification of nonlinearities in Hammerstein systems with random inputs, IEEE Transactions on Signal Processing 56(2): 846-851.

[041] Śliwiński, P. and Hasiewicz, Z. (2009). Recursive nonparametric estimation of Hammerstein system nonlinearity by Haar wavelet series, IEEE Transactions on Automatic Control, (submitted for review).

[042] Śliwiński, P., Hasiewicz, Z. and Wachel, P. (2007). On-line polynomial series estimates of Hammerstein system nonlinearities, Proceedings of the 13th IEEE IFAC International Conference on Methods and Models in Automation and Robotics MMAR 2007, Szczecin, Poland. | Zbl 1279.93041

[043] Śliwiński, P., Rozenblit, J., Marcellin, M.W. and Klempous, R. (2009). Wavelet amendment of polynomial models in nonlinear system identification, IEEE Transactions on Automatic Control 54(4): 820-825.

[044] Srinivasan, R., Rengaswamy, R., Narasimhan, S. and Miller, R. (2005). Control loop performance assessment: 2. Hammerstein model approach for stiction diagnosis, Industrial & Engineering Chemistry Research 44(17): 6719-6728.

[045] Stone, C.J. (1980). Optimal rates of convergence for nonparametric regression, Annals of Statistics 8(6): 1348-1360. | Zbl 0451.62033

[046] Sureshbabu, N. and Farrell, J.A. (1999). Wavelet based system identification for non-linear control, IEEE Transactions on Automatic Control 44(2): 412-417. | Zbl 1056.93519

[047] Unser, M. (1999). Splines. A perfect fit for signal and image processing, IEEE Signal Processing Magazine 16(6): 22-38.

[048] Vörös, J. (2005). Identification of Hammerstein systems with time-varying piecewise-linear characteristics, IEEE Transactions on Circuits and Systems II: Express Briefs 52(12): 865-869.

[049] Walter, G.G. and Shen, X. (2001). Wavelets and other orthogonal systems with applications, 2nd Edn., Chapman & Hall, Boca Raton, FL. | Zbl 1005.42018

[050] Westwick, D.T. and Kearney, R.E. (2001). Separable least squares identification of nonlinear Hammerstein models: Application to stretch reflex dynamics, Annals of Biomedical Engineering 29(8): 707-718.

[051] Westwick, D.T. and Kearney, R.E. (2003). Identification of nonlinear physiological systems, IEEE Press Series on Biomedical Engineering, Wiley/IEEE Press, Piscataway, NJ. | Zbl 0758.92001

[052] Zhao, W.-X. and Chen, H.-F. (2006). Recursive identification for Hammerstein system with ARX subsystem, IEEE Transactions on Automatic Control 51(12): 1966-1974.