This paper proposes a recursive identification method for systems with output backlash that can be described by a pseudoWiener model. In this method, a novel description of the nonlinear part of the system, i.e., backlash, is developed. In this case, the nonlinear system is decomposed into a piecewise linearized model. Then, a modified recursive general identification algorithm (MRGIA) is employed to estimate the parameters of the proposed model. Furthermore, the convergence of the MRGIA for the pseudo-Wiener system with backlash is analysed. Finally, a numerical example is presented.
@article{bwmeta1.element.bwnjournal-article-amcv19i4p631bwm, author = {Ruili Dong and Qingyuan Tan and Yonghong Tan}, title = {Recursive identification algorithm for dynamic systems with output backlash and its convergence}, journal = {International Journal of Applied Mathematics and Computer Science}, volume = {19}, year = {2009}, pages = {631-638}, zbl = {1300.93172}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv19i4p631bwm} }
Ruili Dong; Qingyuan Tan; Yonghong Tan. Recursive identification algorithm for dynamic systems with output backlash and its convergence. International Journal of Applied Mathematics and Computer Science, Tome 19 (2009) pp. 631-638. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv19i4p631bwm/
[000] Boutayeb, M. and Darouach, M. (1995). Recursive identification method for MISO Wiener-Hammerstein model, IEEE Transactions on Automatic Control 40(2): 287-291. | Zbl 0819.93024
[001] Campos, J., Lewis, F. L. and Selmic, R. (2000). Backlash compensation in discrete time nonlinear systems using dynamic inversion by neural networks, International Conference on Automation and Robotics Research, San Francisco, CA, USA, pp. 1289-1295.
[002] Celka, P., Bershad, N. J. and Vesin, J. M. (2001). Stochastic gradient identification of polynomial Wiener systems: Analysis and application, IEEE Transactions on Signal Processing 49(2): 301-313. | Zbl 0992.93093
[003] Chandler, H. W., George, S. D., Liddle, J. and Nixon, S. A. (2000). Backlash: A feature of the cyclic deformation of ceramic pastes, Journal of the European Ceramic Society 20(11): 1699-1705.
[004] Chen, H. F. (2006). Recursive identification algorithms for Wiener model with discontinuous piecewise-linear linear function, IEEE Transactions on Automatic Control 51(3): 390-400.
[005] Fang, C. Z. (2004). System Identification, Qinghua University, Beijing, (in Chinese).
[006] Greblicki, W. (1998). Continuous-time Wiener system identification, IEEE Transactions on Automatic Control 43(10): 1488-1493. | Zbl 0956.93063
[007] Greblicki, W. (2001). Recursive identification of Wiener systems, International Journal of Applied Mathematics and Computer Science 11(4): 977-991. | Zbl 1001.93085
[008] Hu, X. L. and Chen, H. F. (2005). Strong consistence of recursive identification for Wiener systems, Automatica 41(11): 1905-1916. | Zbl 1087.93057
[009] Ljung, L. (1977a). Analysis of recursive stochastic algorithms, IEEE Transactions on Automatic Control AC-22(4): 551-575. | Zbl 0362.93031
[010] Ljung, L. (1977b). On positive real transfer functions and the convergence of some recursive schemes, IEEE Transactions on Automatic Control AC-22(4): 539-551. | Zbl 0361.93063
[011] Nordin, M. and Gutman, P.-O. (2002). Controlling mechanical systems with backlash-A survey, Automatica 38(10): 1633-1649. | Zbl 1030.70013
[012] Pearson, R. K. and Pottmann, M. (2000). Gray-box identification of block-oriented nonlinear models, Journal of Process Control 10(4): 301-315.
[013] Selmic, R. R. and Lewis, F. L. (2001). Neural net backlash compensation with Hebbian tuning using dynamic inversion, Automatica 37(8): 1269-1277. | Zbl 0992.93027
[014] Toyozawa, Y., Kashiwag, H. and Harada, H. (2004). Identification of Volterra kernels of nonlinear system having backlash type nonlinearity, 30th Annual Conference of the IEEE Industrial Electronics Society, Busan, Korea, pp. 2798-2802.
[015] Voros, J. (1995). Identification of nonlinear dynamic system using extended Hammerstein and Wiener models, ControlTheory Advanced Technology 10(4): 1203-1212.
[016] Voros, J. (2001). Parameter identification of Wiener systems with discontinuous nonlinearities, System and Control Letters 44(5): 363-372. | Zbl 0986.93020
[017] Wigren, T. (1997). Circle criteria in recursive identification, IEEE Transactions on Automatic Control 42(7): 975-979. | Zbl 0885.93017