Zeros in linear systems with time delay in state
Jerzy Tokarzewski
International Journal of Applied Mathematics and Computer Science, Tome 19 (2009), p. 609-617 / Harvested from The Polish Digital Mathematics Library

The concept of invariant zeros in a linear time-invariant system with state delay is considered. In the state-space framework, invariant zeros are treated as triples: complex number, nonzero state-zero direction, input-zero direction. Such a treatment is strictly related to the output-zeroing problem and in that spirit the zeros can be easily interpreted. The problem of zeroing the system output is discussed. For systems of uniform rank, the first nonzero Markov parameter comprises a certain amount of information concerning invariant zeros, output-zeroing inputs and zero dynamics. General formulas for output-zeroing inputs and zero dynamics are provided.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:207959
@article{bwmeta1.element.bwnjournal-article-amcv19i4p609bwm,
     author = {Jerzy Tokarzewski},
     title = {Zeros in linear systems with time delay in state},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {19},
     year = {2009},
     pages = {609-617},
     zbl = {1300.93086},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv19i4p609bwm}
}
Jerzy Tokarzewski. Zeros in linear systems with time delay in state. International Journal of Applied Mathematics and Computer Science, Tome 19 (2009) pp. 609-617. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv19i4p609bwm/

[000] Bourles, H. and Fliess, M. (1997). Finite poles and zeros of linear systems: An intrinsic approach, International Journal of Control 68(4):897-922. | Zbl 1034.93009

[001] Górecki, H., Fuksa, S., Grabowski, P. and Korytowski, A. (1989). Analysis and Synthesis of Time Delay Systems, PWN/Wiley, Warsaw/Chichester. | Zbl 0695.93002

[002] Hale, J. (1977). Theory of Functional Differential Equations, Springer, New York, NY. | Zbl 0352.34001

[003] Isidori, A. (1995). Nonlinear Control Systems, Springer Verlag, London. | Zbl 0878.93001

[004] Kamen, E. W., Khargonekar, P. P. and Tannenbaum, A. (1985). Stabilization of time-delay systems using finitedimensional compensators, IEEE Transactions on Automatic Control 30(1): 75-78. | Zbl 0557.93052

[005] Kharitonov, V. L. (1999). Robust stability analysis of time delay systems: A survey, Annual Reviews in Control 23(1): 185-196.

[006] Kharitonov V. L. and Hinrichsen, D. (2004). Exponential estimates for time delay systems, Systems and Control Letters 53(5):395-405. | Zbl 1157.34355

[007] Lee, E. B. and Olbrot, A. W. (1981). Observability and related structural results for linear hereditary systems, International Journal of Control 34(6):1061-1078. | Zbl 0531.93015

[008] MacFarlane, A. G. J. and Karcanias, N. (1976). Poles and zeros of linear multivariable systems: A survey of the algebraic, geometric and complex variable theory, International Journal of Control 24(1):33-74. | Zbl 0374.93014

[009] Marro, G. (1996). Multivariable regulation in geometric terms: Old and new results, in C. Bonivento, G. Marro, R. Zanasi (Eds.), Colloquium on Automatic Control, Lecture Notes in Control and Information Sciences, Vol. 215, Springer Verlag, London, pp. 77-138. | Zbl 0890.93021

[010] Pandolfi, L. (1982). Transmission zeros of systems with delays, International Journal of Control 36(6): 959-976. | Zbl 0504.93026

[011] Pandolfi, L. (1986). Disturbance decoupling and invariant subspaces for delay systems, Applied Mathematics and Optimization 14(1): 55-72. | Zbl 0587.93039

[012] Richard, J. P. (2003). Time-delay systems: An overview of some recent advances and open problems, Automatica 39(10): 1667-1694. | Zbl 1145.93302

[013] Schrader, C. B. and Sain, M. K. (1989). Research on system zeros: A survey, International Journal of Control 50(4):1407-1433. | Zbl 0686.93036

[014] Sontag, E. D. (1990). Mathematical Control Theory, Springer Verlag, New York, NY. | Zbl 0703.93001

[015] Tokarzewski, J. (2002). Zeros in Linear Systems: A Geometric Approach, Warsaw University of Technology Press, Warsaw. | Zbl 1044.93036

[016] Tokarzewski, J. (2006). Finite Zeros in Discrete-Time Control Systems, Lecture Notes in Control and Information Sciences, Vol. 338, Springer Verlag, Berlin. | Zbl 1203.93118