This paper describes the problem of designing control laws for path following robots, including two types of nonholonomic mobile manipulators. Due to a cascade structure of the motion equation, a backstepping procedure is used to achieve motion along a desired path. The control algorithm consists of two simultaneously working controllers: the kinematic controller, solving motion constraints, and the dynamic controller, preserving an appropriate coordination between both subsystems of a mobile manipulator, i.e. the mobile platform and the manipulating arm. A description of the nonholonomic subsystem relative to the desired path using the Frenet parametrization is the basis for formulating the path following problem and designing a kinematic control algorithm. In turn, the dynamic control algorithm is a modification of a passivity-based controller. Theoretical deliberations are illustrated with simulations.
@article{bwmeta1.element.bwnjournal-article-amcv19i4p561bwm, author = {Alicja Mazur and Dawid Szakiel}, title = {On path following control of nonholonomic mobile manipulators}, journal = {International Journal of Applied Mathematics and Computer Science}, volume = {19}, year = {2009}, pages = {561-574}, zbl = {1300.93118}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv19i4p561bwm} }
Alicja Mazur; Dawid Szakiel. On path following control of nonholonomic mobile manipulators. International Journal of Applied Mathematics and Computer Science, Tome 19 (2009) pp. 561-574. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv19i4p561bwm/
[000] Canudas de Wit, C., Siciliano, B. and Bastin, G. (1996). Theory of Robot Control, Springer-Verlag, London. | Zbl 0854.70001
[001] Chung, J., Velinsky, S. and Hess, R. (1998). Interaction control of a redundant mobile manipulator, International Journal of Robotics Research 17(12): 1302-1309.
[002] D'Andréa-Novel, B., Bastin, G. and Campion, G. (1991). Modelling and control of nonholonomic wheeled mobile robots, Proceedings of the IEEE International Conference on Robotics and Automation, Sacramento, CA, USA, pp. 1130-1135.
[003] Dong, W. (2002). On trajectory and force tracking control of constrained mobile manipulators with parameter uncertainty, Automatica 38(9): 1475-1484. | Zbl 1005.93035
[004] Dulęba, I. (2000). Modeling and control of mobile manipulators, Proceedings of the 6th IFAC Symposium on Robot Control, SYROCO'00, Vienna, Austria, pp. 687-692.
[005] Fradkov, A., Miroshnik, I. and Nikiforov, V. (1999). Nonlinear and Adaptive Control of Complex Systems, Kluwer Academic Publishers, Dordrecht. | Zbl 0934.93002
[006] Galicki, M. (2006). Adaptive control of kinematically redundant manipulator, Lecture Notes in Control and Information Sciences (335): 129-139.
[007] Hatano, M. and Obara, H. (2003). Stability evaluation for mobile manipulators using criteria based on reaction, Proceedings of the SICE Annual Conference, Fukui, Japan, pp. 2050-2055.
[008] Huang, Q., Sugano, S. and Tanie, K. (1998). Motion planning for a mobile manipulator considering stability and task constraints, Proceedings of the IEEE International Conference on Robotics and Automation, Leuven, Belgium, pp. 2192-2198.
[009] Khatib, O. (1999). Mobile manipulation: The robotic assistant, Journal on Robotics and Autononous Systems 26: 175-183.
[010] Krstić, M., Kanellakopoulos, I. and Kokotović, P. (1995). Nonlinear and Adaptive Control Design, J. Wiley and Sons, New York, NY. | Zbl 0763.93043
[011] Li, Z., Ge, S. and Ming, A. (2007). Adaptive robust motion/force control of holonomic-constrained nonholonomic mobile manipulator, IEEE Transactions on System, Man and Cybernetics, Part B: Cybernetics 37(3): 607-617.
[012] Mazur, A. (2000). Comparative study of control algorithms for nonholonomic mobile manipulators, Technical Report SPR 38/00, Institute of Engineering Cybernetics, Wrocław University of Technology, http://sequoia.ict.pwr.wroc.pl/˜alicja, (in Polish).
[013] Mazur, A. (2004). Hybrid adaptive control laws solving a path following problem for nonholonomic mobile manipulators, International Journal of Control 77(15): 1297-1306. | Zbl 1067.93044
[014] Nakamura, Y., Chung, W. and Sørdalen, O. J. (2001). Design and control of the nonholonomic manipulator, IEEE Transactions on Robotics and Automation 17(1): 48-59.
[015] Samson, C. (1995). Control of chained systems-Application to path following and time-varying point-stabilization of mobile robots, IEEE Transactions on Automatic Control 40(1): 147-158. | Zbl 0925.93631
[016] Tan, J., Xi, N. and Wang, Y. (2003). Integrated task planning and control for mobile manipulators, International Journal of Robotics Research 22(5): 337-354.
[017] Tchoń, K. and Jakubiak, J. (2004). Acceleration-driven kinematics of mobile manipulators: An endogenous configuration space approach, in J. Lenarˇciˇc and C. Galletti (Eds.), On Advances in Robot Kinematics, Kluwer Academic Publishers, Dordrecht, pp. 469-476.
[018] Tchoń, K., Jakubiak, J. and Zadarnowska, K. (2004). Doubly nonholonomic mobile manipulators, Proceedings of the IEEE International Conference on Robotics and Automation, New Orleans, LA, USA, pp. 4590-4595.
[019] Yamamoto, Y. and Yun, X. (1994). Coordinating locomotion and manipulation of a mobile manipulator, IEEE Transactions on Automatic Control 39(6): 1326-1332. | Zbl 0800.93845
[020] Yamamoto, Y. and Yun, X. (1996). Effect of the dynamic interaction on coordinated control of mobile manipulators, IEEE Transactions on Robotics and Automation 12(5): 816-824.