Approximation of Jacobian inverse kinematics algorithms
Krzysztof Tchoń ; Joanna Karpińska ; Mariusz Janiak
International Journal of Applied Mathematics and Computer Science, Tome 19 (2009), p. 519-531 / Harvested from The Polish Digital Mathematics Library

This paper addresses the synthesis problem of Jacobian inverse kinematics algorithms for stationary manipulators and mobile robots. Special attention is paid to the design of extended Jacobian algorithms that approximate the Jacobian pseudoinverse algorithm. Two approaches to the approximation problem are developed: one relies on variational calculus, the other is differential geometric. Example designs of the extended Jacobian inverse kinematics algorithm for 3DOF manipulators as well as for the unicycle mobile robot illustrate the theoretical concepts.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:207952
@article{bwmeta1.element.bwnjournal-article-amcv19i4p519bwm,
     author = {Krzysztof Tcho\'n and Joanna Karpi\'nska and Mariusz Janiak},
     title = {Approximation of Jacobian inverse kinematics algorithms},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {19},
     year = {2009},
     pages = {519-531},
     zbl = {1300.93123},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv19i4p519bwm}
}
Krzysztof Tchoń; Joanna Karpińska; Mariusz Janiak. Approximation of Jacobian inverse kinematics algorithms. International Journal of Applied Mathematics and Computer Science, Tome 19 (2009) pp. 519-531. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv19i4p519bwm/

[000] Baillieul, J. (1985). Kinematic programming alternatives for redundant manipulators, Proceedings of the 1985 IEEE International Conference on Robotics and Automation, St. Louis, LO, USA, pp. 722-728.

[001] Chitour, Y. and and Sussmann, H. J. (1998). Motion planning using the continuation method, in J. Baillieul, S. S. Sastry and H. J. Sussmann (Eds), Essays on Mathematical Robotics, Springer-Verlag, New York, NY, pp. 91-125. | Zbl 0946.70003

[002] Gelfand, I. M. and Fomin, S. V. (1963). Calculus of Variations, Prentice-Hall, Englewood Cliffs, NJ. | Zbl 0127.05402

[003] Janiak, M. and Tchoń, K. (2008). Extended Jacobian inverse kinematics and approximation of distributions, in J. Lenarcic and Ph. Wenger (Eds), Advances in Robot Kinematics, Springer Science+Business Media, Berlin, pp. 137-146.

[004] Klein, Ch. A. and Huang, C. (1983). Review of the pseudoinverse control for use with kinematically redundant manipulators, IEEE Transactions on Systems, Man and Cybernetics 13(3): 245-250.

[005] Klein, Ch. A., Chu-Jenq, C. and Ahmed, Sh. (1995). A new formulation of the extended Jacobian method and its use in mapping algorithmic singularities for kinematically redundant manipulators, IEEE Transactions on Robotics and Automation 11(1): 50-55.

[006] Roberts, R. G. and Maciejewski, A. A. (1992). Nearest optimal repeatable control strategies for kinematically redundant manipulators, IEEE Transactions on Robotics and Automation 8(3): 327-337.

[007] Roberts, R. G. and Maciejewski, A. A. (1993). Repeatable generalized inverse control strategies for kinematically redundant manipulators, IEEE Transactions on Automatic Control 38(5): 689-699. | Zbl 0800.93537

[008] Roberts, R. G. and Maciejewski, A. A. (1993). Singularities, stable surfaces, and the repeatable behavior of kinematically redundant manipulators, International Journal of Robotics Research 13(1): 207-213.

[009] Shamir, T. and Yomdin, Y. (1988). Repeatability of redundant manipulators: Mathematical solution of the problem, IEEE Transactions on Automatic Control 33(11): 1004-1009. | Zbl 0672.93055

[010] Sluis, W. M., Banaszuk, A., Hauser, J. and Murray, R. M.(1996). A homotopy algorithm for approximating geometric distributions by integrable systems, Systems & Control Letters 27(5): 285-291. | Zbl 0866.93021

[011] Tchoń, K. (2002). Repeatability of inverse kinematics algorithms for mobile manipulators, IEEE Transactions on Automatic Control 47(8): 1376-1380.

[012] Tchoń, K. (2007). Continuation method in robotics, Proceedings of the 7th Conference on Computer Methods and Systems, Cracow, Poland, pp. 17-24.

[013] Tchoń, K. (2008). Optimal extended Jacobian inverse kinematics algorithms for robotic manipulators, IEEE Transactions on Robotics 28(6): 1440-1445.

[014] Tchoń, K. and Jakubiak, J. (2006). Extended Jacobian inverse kinematics algorithm for non-holonomic mobile robots, International Journal of Control 79(8): 895-909. | Zbl 1114.70006