Control error dynamic modification as an efficient tool for reduction of effects introduced by actuator constraints
Krzysztof B. Janiszowski
International Journal of Applied Mathematics and Computer Science, Tome 19 (2009), p. 271-279 / Harvested from The Polish Digital Mathematics Library

A modification of digital controller algorithms, based on the introduction of a virtual reference value, which never exceeds active constraints in the actuator output is presented and investigated for some algorithms used in single-loop control systems. This idea, derived from virtual modification of a control error, can be used in digital control systems subjected to both magnitude and rate constraints. The modification is introduced in the form of on-line adaptation to the control task. Hence the design of optimal (in a specified sense) digital controller parameters can be separated from actuator constraints. The adaptation of the control algorithm (to actuator constraints) is performed by the transformation of the control error and is equivalent to the introduction of a new, virtual reference value for the control system. An application of this approach is presented through examples of three digital control algorithms: the PID algorithm, the dead-beat controller and the state space controller. In all cases, clear advantages of transients are observed, which yields some general conclusions to the problem of processing actuator constraints in control.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:207934
@article{bwmeta1.element.bwnjournal-article-amcv19i2p271bwm,
     author = {Krzysztof B. Janiszowski},
     title = {Control error dynamic modification as an efficient tool for reduction of effects introduced by actuator constraints},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {19},
     year = {2009},
     pages = {271-279},
     zbl = {1167.93372},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv19i2p271bwm}
}
Krzysztof B. Janiszowski. Control error dynamic modification as an efficient tool for reduction of effects introduced by actuator constraints. International Journal of Applied Mathematics and Computer Science, Tome 19 (2009) pp. 271-279. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv19i2p271bwm/

[000] Advant® CS (1998). User's Guide, ABB Industrial Systems AB.

[001] Åstrom, K. and Hägglund, T. (1995). PID Controllers, Theory, Design and Tuning, 2nd Edition, ISA Press, London.

[002] Åstrom, K. and Wittenmark, B. (1997). Computer Controlled Systems-Theory and Design, Prentice Hall, New York, NY.

[003] Grimm, G., Postlethwaite, I., Teel, A. T., Turner, M. C. and Zaccarian, L. (2003). Case studies using linear matrix inequalities for optimal anti-windup synthesis, European Journal of Control 9: 463-470. | Zbl 1293.93314

[004] Hanus, R., Kinnaert, M. and Henrotte, J. L. (1987). Conditioning technique, a general anti-windup and bumpless transfer method, Automatica 23: 729-739. | Zbl 0638.93036

[005] Hippe, P. (2003). Windup prevention for unstable systems, Automatica 39: 1967-1973. | Zbl 1046.93021

[006] Janiszowski, K. (1983). A linear digital controller for single loop control systems, International Journal on Control 37(1): 159-174. | Zbl 0509.93030

[007] Janiszowski, K. (2004). Adaptation, modelling of dynamic drives and controller design in servomechanism pneumatic systems, IEEE Proceedings-Control Theory & Applications 151(2): 234-245.

[008] Janiszowski, K. (2005). Dynamic modification of reference value for improvement of PID control, Proceedings of the IEEE Conference on Methods and Models in Automation and Robotics, MMAR, Mi˛edzyzdroje, Poland, (on CD-ROM).

[009] Kothare, M. V., Campo, P. J., Morari, M. and Nett, C.N. (1994). A unified framework for the study of anti-windup designs, Automatica 30(12): 1869-1883. | Zbl 0825.93312

[010] Ngyuen, T. and Jabbari, F. (2000). Output feedback controllers for disturbance attenuation with actuator amplitude and rate saturation, Automatica 36: 1339-1346. | Zbl 0959.93505

[011] Shinskey, F.G. (1996). Process Control Systems-Application, Design, Tuning, Mc-Graw Hill, New York, NY.

[012] Siemens (1990). Compact Controller SIPART DR20, Project planning manual.

[013] da Silva, J. M. G., Tarbouriech, S. and Garcia, G. (2003). Local stabilisation of linear systems under amplitude and rate saturating actuators, IEEE Transactions on Automatic Control 48(5): 842-847.

[014] Scottedward, H. A. and Hall, C. E. (2001). Variable structure PID control to prevent integrator windup, IEEE Transactions on Electronics 48: 442-451.

[015] Turner, M. C. and Postlethwaite, I. (2004). A new perspective on static and low order anti-windup synthesis, International Journal on Control 77(1): 27-44. | Zbl 1050.93027

[016] Unbehauen, H. (1987). Regelungstechnik II, Vieweg Verlag, Braunschweig. | Zbl 0563.93002

[017] Visioli, A. (2003). Modified anti-windup scheme for PID controllers, IEE Proceedings-D 150(1): 49-54.

[018] Walgama, K. S., Rönback, S. and Sternby, J. (1992). Generalisation of conditioning technique for anti-windup compensators, IEE Proceedings-D 132(2): 705-724. | Zbl 0711.93045

[019] Walgama, K. S. and Sternby J. (1993). On the convergence properties of adaptive pole-placement controllers with antiwindup compensators, IEEE Transactions on Automatic Control 38(1): 128-132. | Zbl 0786.93011