Two models of positive 2D discrete-time linear Lyapunov systems are introduced. For both the models necessary and sufficient conditions for positivity, asymptotic stability, reachability and observability are established. The discussion is illustrated with numerical examples.
@article{bwmeta1.element.bwnjournal-article-amcv19i1p95bwm, author = {Przemys\l aw Przyborowski and Tadeusz Kaczorek}, title = {Positive 2D discrete-time linear Lyapunov systems}, journal = {International Journal of Applied Mathematics and Computer Science}, volume = {19}, year = {2009}, pages = {95-105}, zbl = {1169.93364}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv19i1p95bwm} }
Przemysław Przyborowski; Tadeusz Kaczorek. Positive 2D discrete-time linear Lyapunov systems. International Journal of Applied Mathematics and Computer Science, Tome 19 (2009) pp. 95-105. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv19i1p95bwm/
[000] Bose, N.K. (1982). Applied Multidimensional System Theory, Van Nostrand Reinhold Co, New York, NY. | Zbl 0574.93031
[001] Bose, N.K, Buchberger, B. and Guiver, J.P. (2003). Multidimensional Systems Theory and Applications, Kluwer Academic Publishers, Dordrecht.
[002] Busłowicz, M. (2006), Stability of positive linear discrete-time systems with unit delay with canonical forms of state matrices, Proceedings of 12-th IEEE International Conference on Methods and Models in Automation and Robotics, Międzyzdroje, Poland.
[003] Farina, L. and Rinaldi, S. (2000). Positive Linear Systems Theory and Applications, Wiley, New York, NY. | Zbl 0988.93002
[004] Fornasini, E. and Marchesini, G. (1976) State-space realization theory of two-dimensional filters, IEEE Transactions on Automatic Control 21(4): 481-491. | Zbl 0332.93072
[005] Fornasini, E. and Marchesini, G. (1978). Double indexed dynamical systems, Mathematical Systems Theory 12: 59-72. | Zbl 0392.93034
[006] Gałkowski, K. (2001). State Space Realizations of Linear 2D Systems with Extensions to the General nD (n > 2) Case, Springer, London. | Zbl 1007.93001
[007] Kaczorek, T. (1985). Two-Dimensional Linear Systems, Springer, Berlin. | Zbl 0593.93031
[008] Kaczorek, T. (1996). Reachability and controllability of nonnegative 2D Roesser type models, Bulletin of the Polish Academy of Sciences: Technical Sciences 44(4): 405-410. | Zbl 0888.93009
[009] Kaczorek, T. (1998). Vectors and Matrices in Automation and Electrotechnics, Wydawnictwo Naukowo-Techniczne, Warsaw (in Polish).
[010] Kaczorek, T. (2001). Positive 1D and 2D Systems, Springer-Verlag, London. | Zbl 1005.68175
[011] Kaczorek, T. (2003). Realizations problem for positive discretetime systems with delays, Systems Science 29(1): 15-29.
[012] Kaczorek, T. (2004). Realization problem for positive 2D systems with delays, Machine Intelligence and Robotic Control 6(2): 61-68.
[013] Kaczorek, T. (2005). Reachability and minimum energy control of positive 2D systems with delays, Control and Cybernetics 34(2): 411-423. | Zbl 1167.93359
[014] Kaczorek, T. (2006a). Minimal positive realizations for discretetime systems with state time-delays, The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, COMPEL 25(4): 812-826. | Zbl 1125.93409
[015] Kaczorek, T. (2006b). Positive 2D systems with delays, Proceedings of the 12-th IEEE|IFAC International Conference on Methods in Automation and Robotics, Międzyzdroje, Poland. | Zbl 1122.93318
[016] Kaczorek, T. (2007). Positive discrete-time linear Lyapunov systems, Proceedings of the 15-th Mediterranean Conference of Control and Automation, MED, Athens, Greece. | Zbl 1119.93370
[017] Kaczorek, T. (2008a). Asymptotic stability of positive 2D linear systems, Proceedings of the 13-th Scientific Conference on Computer Applications in Electrical Engineering, Poznań, Poland. | Zbl 1154.93017
[018] Kaczorek, T. (2008b). LMI approach to stability of 2D positive systems, Multidimensional Systems and Signal Processing, (in press). | Zbl 1169.93022
[019] Kaczorek, T. (2008c). Asymptotic stability of positive 2D linear systems with delays, Lecture Notes in Electrical Engineering: Numerical Linear Algebra in Signals, Systems and Control, Springer-Verlag.
[020] Kaczorek, T. and Przyborowski, P. (2007a). Positive continuoustime linear Lyapunov systems, Proceedings of the International Conference on Computer as a Tool, EUROCON 2007, Warsaw, Poland, pp. 731-737. | Zbl 1176.93067
[021] Kaczorek, T. and Przyborowski, P. (2007b). Positive continuoustime linear time-varying Lyapunov systems, Proceedings of the 16-th International Conference on Systems Science, Wrocław, Poland, Vol. I, pp. 140-149. | Zbl 1176.93067
[022] Kaczorek, T. and Przyborowski, P. (2007c). Continuoustime linear Lyapunov cone-systems, Proceedings of the 13-th IEEE IFAC International Conference on Methods and Models in Automation and Robotics, Szczecin, Poland, pp. 225-229.
[023] Kaczorek, T. and Przyborowski, P. (2007d). Positive discretetime linear Lyapunov systems with delays, Przegląd Elektrotechniczny (2): 12-15. | Zbl 1176.93067
[024] Kaczorek, T. and Przyborowski, P. (2007e). Positive linear Lyapunov systems, FNA-ANS International Journal - Problems of Nonlinear Analysis in Engineering Systems 13(2): 35-60. | Zbl 1176.93067
[025] Kaczorek, T. and Przyborowski, P. (2008). Reachability, controllability to zero and observability of the positive discretetime Lyapunov systems, Control and Cybernetics Journal, (submitted). | Zbl 1301.93025
[026] Klamka, J. (1991). Controllability of Dynamical Systems, Kluwer, Dordrecht. | Zbl 0732.93008
[027] Klamka, J. (1996a). Controllability of 2-D systems, Proceedings of the 3-rd Conference on Methods and Models in Automation and Robotics, Międzyzdroje, Poland, pp. 207-212.
[028] Klamka, J. (1996b). Controllability and minimum energy control of 2-D linear systems, Proceedings of the International Conference on Circuits Systems and Computers, Athens, Greece, Vol. 1, pp. 45-50.
[029] Klamka, J. (1997a). Controllability of infinite-dimensional 2-D linear systems, Advances in Systems Science and Applications 1(1): 537-543.
[030] Klamka, J. (1997b). Controllability of nonlinear 2-D systems, Nonlinear Analysis, Theory, Methods and Applications 30(5): 2963-2968. | Zbl 0896.93005
[031] Klamka, J. (1997c). Controllability of 2-D systems systems: A survey, Applied Mathematics and Computer Science 7(4): 101-120.
[032] Klamka, J. (1997d). Controllability and minimum energy control of 2-D linear systems, Proceedings of the American Control Conference ACC'97, Albuquerque, NM, USA, Vol. 5, pp. 3141-3143.
[033] Klamka, J. (1998a). Constrained controllability of positive 2-D systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 46(1): 95-104. | Zbl 1039.93003
[034] Klamka, J. (1998b). Constrained controllability of 2-D systems, Proceedings of the Symposium on Modelling Analysis and Control, Hammamet, Tunisia. | Zbl 1039.93003
[035] Klamka, J. (1998c). Constrained controllability of linear positive 2-D systems, Proceedings of the 9-th Symposium on Systems, Modelling, Control, SMC-9, Zakopane, Poland. | Zbl 1039.93003
[036] Klamka, J. (1999a). Local controllability of 2-D nonlinear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 47(2): 153-161. | Zbl 0941.93005
[037] Klamka, J. (1999b). Controllability of 2-D linear systems, in P.M. Frank (Ed.), Advances in Control. Highlights of ECC'99, Springer, Berlin, pp. 319-326.
[038] Klamka, J. (1999c). Controllability of 2-D nonlinear systems, Proceedings of the European Control Conference, Karlsruhe, Germany, pp. 1121-1127.
[039] Klamka, J. (2002). Positive controllability of positive dynamical systems, Proceedings of the American Control Conference, Anchorage, AK, USA, (on CD-ROM). | Zbl 1017.93014
[040] Klamka, J. (2005). Approximate constrained controllability of mechanical systems, Journal of Theoretical and Applied Mechanics 43(3): 539-554.
[041] Kurek, J. (1985). The general state-space model for a twodimensional linear digital systems, IEEE Transactions on Automatic Control 30(6): 600-602. | Zbl 0561.93034
[042] Murty, M.S.N. and Apparao, B.V. (2005). Controllability and observability of Lyapunov systems, Ranchi University Mathematical Journal 32: 55-65. | Zbl 1103.93035
[043] Przyborowski, P. (2008a). Positive fractional discrete-time Lyapunov systems, Archives of Control Sciences 18(LIV)(1): 5-18. | Zbl 1187.93088
[044] Przyborowski, P. (2008b). Fractional discrete-time Lyapunov cone-systems, Przegląd Elektrotechniczny (5): 47-52. | Zbl 1187.93088
[045] Przyborowski, P. and Kaczorek, T. (2008). Linear Lyapunov cone-systems, in J. M. Ramos Arreguin (Ed.), Automation and Robotics-New Challenges, I-Tech Education and Publishing, Vienna, (in press).
[046] Roesser, R.P. (1975). A discrete state-space model for linear image processing, IEEE Transactions on Automatic Control 20(1): 1-10. | Zbl 0304.68099
[047] Twardy, M. (2007). An LMI approach to checking stability of 2D positive system, Bulletin of the Polish Academy of Sciences: Technical Sciences 54(4): 385-395
[048] Valcher, M.E. (1997). On the internal stability and asymptotic behavior of 2D positive systems, IEEE Transactions On Circuits and Systems-I 44(7): 602-613. | Zbl 0891.93046