Reachability of cone fractional continuous-time linear systems
Tadeusz Kaczorek
International Journal of Applied Mathematics and Computer Science, Tome 19 (2009), p. 89-93 / Harvested from The Polish Digital Mathematics Library

A new class of cone fractional continuous-time linear systems is introduced. Necessary and sufficient conditions for a fractional linear system to be a cone fractional one are established. Sufficient conditions for the reachability of cone fractional systems are given. The discussion is illustrated with an example of linear cone fractional systems.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:207925
@article{bwmeta1.element.bwnjournal-article-amcv19i1p89bwm,
     author = {Tadeusz Kaczorek},
     title = {Reachability of cone fractional continuous-time linear systems},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {19},
     year = {2009},
     pages = {89-93},
     zbl = {1169.93004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv19i1p89bwm}
}
Tadeusz Kaczorek. Reachability of cone fractional continuous-time linear systems. International Journal of Applied Mathematics and Computer Science, Tome 19 (2009) pp. 89-93. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv19i1p89bwm/

[000] Engheta, N. (1997). On the role of fractional calculus in electromagnetic theory, IEEE Transactions on Antennas and Propagation 39(4): 35-46.

[001] Farina, L. and Rinaldi, S. (2000). Positive Linear Systems: Theory and Applications, J. Wiley, New York, NY. | Zbl 0988.93002

[002] Ferreira, N.M.F. and Machado, J.A.T. (2003). Fractional-order hybrid control of robotic manipulators, Proceedings of the 11-th International Conference on Advanced Robotics, ICAR'2003, Coimbra, Portugal, pp. 393-398.

[003] Gałkowski, K. (2005). Fractional polynomials and nD systems. Proceedings of the IEEE International Symposium on Circuits and Systems, ISCAS'2005, Kobe, Japan, CD-ROM.

[004] Kaczorek, T. (2002). Positive 1D and 2D Systems, Springer-Verlag, London. | Zbl 1005.68175

[005] Kaczorek, T. (2006). Computation of realizations of discretetime cone systems, Bulletin of the Polish Academy of Sciences 54(3): 347-350. | Zbl 1194.93129

[006] Kaczorek, T. (2007a). Reachability and controllability to zero tests for standard and positive fractional discrete-time systems, JESA Journal, 2007, (submitted).

[007] Kaczorek, T. (2007b). Reachability and controllability to zero of positive fractional discrete-time systems, Machine Intelligence and Robotic Control 6(4): 139-143.

[008] Kaczorek, T. (2007c). Cone-realizations for multivariable continuous-me systems with delays, Advances in Systems Science and Applications 8(1): 25-34.

[009] Kaczorek, T. (2007d). Reachability and controllability to zero of cone fractional linear systems, Archives of Control Sciences 17(3): 357-367. | Zbl 1152.93393

[010] Kaczorek, T. (2008). Fractional positive continuous-time linear systems and their reachability, International Journal of Applied Mathematics and Computer Science 18(2):223-228. | Zbl 1235.34019

[011] Miller, K. S. and Ross, B. (1993). An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, NY. | Zbl 0789.26002

[012] Nishimoto, K. (1984). Fractional Calculus, Decartess Press, Koriama. | Zbl 0605.26006

[013] Oldham, K. B. and Spanier, J. (1974). The Fractional Calculus, Academic Press, New York, NY. | Zbl 0292.26011

[014] Ortigueira, M. D. (1997). Fractional discrete-time linear systems, Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing 97, Munich, Germany, pp. 2241-2244.

[015] Ostalczyk, P. (2000). The non-integer difference of the discretetime function and its application to the control system synthesis, International Journal of Systems Science 31(12): 1551-1561. | Zbl 1080.93592

[016] Ostalczyk, P. (2004). Fractional-order backward difference equivalent forms. Part I-Horner's form, Proceedings of the 1-st IFAC Workshop on Fractional Differentation and Its Applications, FDA'04, Enseirb, Bordeaux, France, pp. 342-347.

[017] Ostalczyk, P. (2004). Fractional-order backward difference equivalent forms. Part II-Polynomial form, Proceedings of the 1-st IFAC Workshop on Fractional Differentation and Its Applications, FDA'04, Enseirb, Bordeaux, France, pp. 348-353.

[018] Oustaloup, A. (1993). Commande CRONE, Hermès, Paris.

[019] Oustaloup, A. (1995). La dèrivation non entière. Hermès, Paris. | Zbl 0864.93004

[020] Podlubny, I. (1999). Fractional Differential Equations, Academic Press, San Diego, CA. | Zbl 0924.34008

[021] Podlubny, I., Dorcak, L. and Kostial, I. (1997). On fractional derivatives, fractional order systems and PIλDμ-controllers, Proceedings of the 36-th IEEE Conference on Decision and Control, San Diego, CA, USA, pp. 4985-4990.

[022] Reyes-Melo, M.E., Martinez-Vega, J.J., Guerrero-Salazar C.A. and Ortiz-Mendez, U. (2004). Modelling and relaxation phenomena in organic dielectric materials. Application of differential and integral operators of fractional order, Journal of Optoelectronics and Advanced Materials 6(3): 1037-1043.

[023] Riu, D., Retiére, N. and Ivanes, M. (2001). Turbine generator modeling by non-integer order systems, Proceedings of the IEEE International Conference on Electric Machines and Drives Conference, IEMDC 2001, Cambridge, MA, USA, pp. 185-187.

[024] Samko, S. G., Kilbas, A.A. and Martichew, O.I. (1993). Fractional Integrals and Derivative. Theory and Applications, Gordon & Breac, London.

[025] Sierociuk, D. and Dzieliński, D. (2006). Fractional Kalman filter algorithm for the states, parameters and order of fractional system estimation, International Journal of Applied Mathematics and Computer Science 16(1): 129-140. | Zbl 1334.93172

[026] Sjöberg, M. and Kari, L. (2002). Non-linear behavior of a rubber isolator system using fractional derivatives, Vehicle System Dynamics 37(3): 217-236.

[027] Vinagre, B. M., Monje, C. A. and Calderon, A.J. (2002). Fractional order systems and fractional order control actions, Lecture 3 IEEE CDC'02 TW#2: Fractional Calculus Applications in Automatic Control and Robotics.

[028] Vinagre, B. M. and Feliu, V. (2002). Modeling and control of dynamic system using fractional calculus: Application to electrochemical processes and flexible structures, Proceedings of the 41-st IEEE Conference on Decision and Control, Las Vegas, NV, USA, pp. 214-239.

[029] Zaborowsky, V. and Meylaov, R. (2001). Informational network traffic model based on fractional calculus, Proceedings of International Conference on Info-tech and Info-net, ICII 2001, Beijing, China, Vol. 1, pp. 58-63.