On the realization theory of polynomial matrices and the algebraic structure of pure generalized state space systems
Antonis-Ioannis G. Vardulakis ; Nicholas P. Karampetakis ; Efstathios N. Antoniou ; Evangelia Tictopoulou
International Journal of Applied Mathematics and Computer Science, Tome 19 (2009), p. 77-88 / Harvested from The Polish Digital Mathematics Library

We review the realization theory of polynomial (transfer function) matrices via "pure" generalized state space system models. The concept of an irreducible-at-infinity generalized state space realization of a polynomial matrix is defined and the mechanism of the "cancellations" of "decoupling zeros at infinity" is closely examined. The difference between the concepts of irreducibility and minimality of generalized state space realizations of polynomial (transfer function) matrices is pointed out and the associated concepts of dynamic and non-dynamic variables appearing in generalized state space realizations are also examined.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:207924
@article{bwmeta1.element.bwnjournal-article-amcv19i1p77bwm,
     author = {Antonis-Ioannis G. Vardulakis and Nicholas P. Karampetakis and Efstathios N. Antoniou and Evangelia Tictopoulou},
     title = {On the realization theory of polynomial matrices and the algebraic structure of pure generalized state space systems},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {19},
     year = {2009},
     pages = {77-88},
     zbl = {1169.93009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv19i1p77bwm}
}
Antonis-Ioannis G. Vardulakis; Nicholas P. Karampetakis; Efstathios N. Antoniou; Evangelia Tictopoulou. On the realization theory of polynomial matrices and the algebraic structure of pure generalized state space systems. International Journal of Applied Mathematics and Computer Science, Tome 19 (2009) pp. 77-88. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv19i1p77bwm/

[000] Bosgra, O. and Van Der Weiden, A. (1981). Realizations in generalized state-space form for polynomial system matrices and the definitions of poles, zeros and decoupling zeros at infinity, International Journal of Control 33(3): 393-411. | Zbl 0464.93021

[001] Christodoulou, M. and Mertzios, B. (1986). Canonical forms for singular systems, Proceedings of the of 25th IEEE Conference on Decision and Control (CDC), Athens, Greece, pp. 2142-2143.

[002] Cobb, D. (1984). Controllability, observability, and duality in singular systems, IEEE Transactions on Automatic Control 29(12): 1076-1082.

[003] Conte, G. and Perdon, A. (1982). Generalized state space realizations of non-proper rational transfer functions, Systems and Control Letters 1(4): 270-276. | Zbl 0473.93023

[004] Gantmacher, F. (1959). The Theory of Matrices, Chelsea Publishing Company, New York, NY. | Zbl 0085.01001

[005] Karampetakis, N. (1993). Notions of Equivalence for Linear Time Invariant Multivariable Systems, Ph.D. thesis, Department of Mathematics, Aristotle University of Thessaloniki.

[006] Lewis, F. (1986). A survey of linear singular systems, Circuits, Systems, and Signal Processing 5(1): 3-36. | Zbl 0613.93029

[007] Lewis, F., Beauchamp, G. and Syrmos, V. (1989). Some useful aspects of the infinite structure in singular systems, Proceedings of the International Symposium MTNS-89, Amsterdam, The Netherlands, pp. 263-270. | Zbl 0726.93035

[008] Misra, P. and Patel, R. (1989). Computation of minimal-order realizations of generalized state-space systems, Circuits, Systems, and Signal Processing 8(1): 49-70. | Zbl 0681.93013

[009] Rosenbrock, H. (1970). State Space and Multivariable Theory, Nelson, London. | Zbl 0246.93010

[010] Rosenbrock, H. (1974). Structural properties of linear dynamical systems, International Journal of Control 20(2): 191-202. | Zbl 0285.93019

[011] Vafiadis, D. and Karcanias, N. (1995). Generalized state-space realizations from matrix fraction descriptions, IEEE Transactions on Automatic Control 40(6): 1134-1137. | Zbl 0829.93011

[012] Vardulakis, A. (1991). Linear Multivariable Control: Algebraic Analysis and Synthesis Methods, Wiley, New York, NY. | Zbl 0751.93002

[013] Vardulakis, A. and Karcanias, N. (1983). Relations between strict equivalence invariants and structure at infinity of matrix pencils, IEEE Transactions on Automatic Control 28(4): 514-516. | Zbl 0519.93025

[014] Vardulakis, A., Limebeer, D. and Karcanias, N. (1982). Structure and Smith-MacMillan form of a rational matrix at infinity, International Journal of Control 35(4): 701-725. | Zbl 0495.93010

[015] Varga, A. (1989). Computation of irreducible generalized statespace realizations, Kybernetika 26(2): 89-106. | Zbl 0715.93030

[016] Verghese, G. (1978). Infinite Frequency Behavior in Dynamical Systems, Ph.D. thesis, Department of Electrical Engineering, Stanford University.

[017] Verghese, G., Levy, B. and Kailath, T. (1981). A generalized state-space for singular systems, IEEE Transactions on Automatic Control 26(4): 811-831. | Zbl 0541.34040