Actuator fault tolerance in control systems with predictive constrained set-point optimizers
Piotr M. Marusak ; Piotr Tatjewski
International Journal of Applied Mathematics and Computer Science, Tome 18 (2008), p. 539-551 / Harvested from The Polish Digital Mathematics Library

Mechanisms of fault tolerance to actuator faults in a control structure with a predictive constrained set-point optimizer are proposed. The structure considered consists of a basic feedback control layer and a local supervisory set-point optimizer which executes as frequently as the feedback controllers do with the aim to recalculate the set-points both for constraint feasibility and economic performance. The main goal of the presented reconfiguration mechanisms activated in response to an actuator blockade is to continue the operation of the control system with the fault, until it is fixed. This may be even long-term, if additional manipulated variables are available. The mechanisms are relatively simple and consist in the reconfiguration of the model structure and the introduction of appropriate constraints into the optimization problem of the optimizer, thus not affecting the numerical effectiveness. Simulation results of the presented control system for a multivariable plant are provided, illustrating the efficiency of the proposed approach.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:207906
@article{bwmeta1.element.bwnjournal-article-amcv18i4p539bwm,
     author = {Piotr M. Marusak and Piotr Tatjewski},
     title = {Actuator fault tolerance in control systems with predictive constrained set-point optimizers},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {18},
     year = {2008},
     pages = {539-551},
     zbl = {1155.93357},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv18i4p539bwm}
}
Piotr M. Marusak; Piotr Tatjewski. Actuator fault tolerance in control systems with predictive constrained set-point optimizers. International Journal of Applied Mathematics and Computer Science, Tome 18 (2008) pp. 539-551. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv18i4p539bwm/

[000] Bemporad A., Borrelli F. and Morari M. (2000a). Optimal controllers for hybrid systems: Stability and piecewise linear explicit form, Proceedings of the 39-th IEEE Conference on Decision and Control, Sydney, Australia, pp. 1810-1815.

[001] Bemporad A., Ferrari-Trecate G. and Morari M. (2000b). Observability and controllability of piecewise affine and hybrid systems, IEEE Transactions on Automatic Control 45(10): 1864-1876. | Zbl 0990.93010

[002] Bemporad A., Morari M., Dua V. and Pistikopoulos E. (2002). The explicit linear-quadratic regulator for constrained systems, Automatica 38(1): 3-20. | Zbl 0999.93018

[003] Biswas P., Grieder P., Löfberg J. and Morari M. (2005). A survey on stability analysis of discrete-time piecewise affine systems, Proceedings of the IFAC World Congress, Prague, Czech Republic, CD-ROM, paper no. Th-E12-TO/1.

[004] Blanke M., Kinnaert M., Lunze J. and Staroswiecki M. (2006). Diagnosis and Fault-Tolerant Control, Springer-Verlag, Berlin. | Zbl 1126.93004

[005] Blevins T., McMillan G., Wojsznis W. and Brown M. (2003). Advanced Control Unleashed, ISA - The Instrumentation, Systems, and Automation Society, Research Triangle Park.

[006] Camacho E. and Bordons C. (1999). Model Predictive Control, Springer-Verlag, London. | Zbl 1223.93037

[007] Jones C., Kerrigan E. and Maciejowski J. (2007). Lexicographic perturbation for multiparametric linear programming with applications to control, Automatica 43(10): 1808-1816. | Zbl 1127.90068

[008] Kassmann D., Badgwell T. and Hawkins R. (2000). Robust steady-state target calculation for model predictive control, AIChE Journal 46(5): 1007-1024.

[009] Kerrigan, E. and Maciejowski J. (2004). Feedback min-max model predictive control using a single linear program: Robust stability and the explicit solution, International Journal of Robust and Nonlinear Control 14(4): 395-413. | Zbl 1051.93034

[010] Korbicz J., Kościelny J., Kowalczuk Z. and Cholewa W. (2004). Fault Diagnosis: Models, Artificial Intelligence, Applications, Springer-Verlag, Berlin. | Zbl 1074.93004

[011] Kościelny J. (2001). Diagnosis of Automated Industrial Processes, Academic Publishing House EXIT, Warsaw (in Polish).

[012] Ławryńczuk M., Marusak P. and Tatjewski P. (2007a). Multilayer and integrated structures for predictive control and economic optimisation, Proceedings of the 11-th IFAC/IFORS/IMACS/IFIP Symposium on Large Scale Systems: Theory and Applications, Gdańsk, Poland, CD-ROM, paper no. 60. | Zbl 1153.93411

[013] Ławryńczuk M., Marusak P. and Tatjewski P. (2007b). Set-point optimisation and predictive constrained control for fast feedback controlled processes, Proceedings of the 13-th IEEE/IFAC International Conference on Methods and Models in Automation and Robotics MMAR 2007, Szczecin, Poland, pp. 357-362.

[014] Lunze J. and Schröder J. (2004). Sensor and actuator fault diagnosis of systems with discrete inputs and outputs, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 34(2): 1096-1107.

[015] Lunze J. and Steffen T. (2006). Control reconfiguration after actuator failures using disturbance decoupling methods, IEEE Transactions on Automatic Control 51(10): 1590-1601.

[016] Lunze J. and Supavatanakul P. (2002). Timed discrete-event method for diagnosis of industrial actuators, Proceedings of the IEEE International Conference on Industrial Technology, Bangkok, Thailand, pp. 1354-1359.

[017] Maciejowski J. (2002). Predictive Control with Constraints, Prentice Hall, Harlow. | Zbl 0978.93002

[018] Marusak P. (2006). Predictive control algorithms in constrained control systems tolerating sensor faults, Proceedings of the 12-th IEEE International Conference on Methods and Models in Automation and Robotics MMAR 2006, Mi˛edzyzdroje, Poland, pp. 797-804.

[019] Marusak P. (2007a). Actuator fault toleration in control systems with analytical predictive controllers and output constraints, Proceedings of the 13-th IEEE/IFAC International Conference on Methods and Models in Automation and Robotics MMAR 2007, Szczecin, Poland, pp. 825-832.

[020] Marusak P. (2007b). Predictive controllers integrated with economic optimization tolerating actuator faults: Application to a nonlinear plant, in J. Korbicz, K. Patan and M. Kowal (Eds), Fault Diagnosis and Fault Tolerant Control, Academic Publishing House EXIT, Warsaw, pp. 173-185.

[021] Marusak P. and Tatjewski P. (2004). Predictive control algorithms in systems tolerating actuator faults, Proceedings of the 10-th IEEE International Conference on Methods and Models in Automation and Robotics MMAR 2004, Mi˛edzyzdroje, Poland, pp. 1355-1360.

[022] Mayne D., Rawlings J., Rao C. and Scokaert P. (2000). Constrained model predictive control: Stability and optimality, Automatica 36(6): 789-814. | Zbl 0949.93003

[023] Mignone D., Ferrari-Trecate G. and Morari M. (2000). Stability and stabilization of piecewise affine and hybrid systems: An LMI approach, Proceedings of the 39-th IEEE Conference on Decision and Control, Sydney, Australia, pp. 504-509.

[024] Newell R. and Lee P. (1989). Applied Process Control - A Case Study, Prentice Hall, London.

[025] Qin S. and Badgwell T. (2003). A survey of industrial model predictive control technology, Control Engineering Practice 11(7): 733-764.

[026] Richter J., Schlage T. and Lunze J. (2007). Control reconfiguration of a thermofluid process by means of a virtual actuator, IET Control Theory and Applications 1(6): 1606-1620.

[027] Rossiter J. (2003). Model-Based Predictive Control, CRC Press, Boca Raton, FL.

[028] Staroswiecki M., Yang H. and Jiang B. (2007). Progressive accommodation of parametric faults in linear quadratic control, Automatica 43(12): 2070-2076. | Zbl 1138.49029

[029] Tatjewski P. (2007). Advanced Control of Industrial Processes; Structures and Algorithms, Springer-Verlag, London. | Zbl 1134.93037

[030] Tondell P., Johansen T. and Bemporad A. (2003). An algorithm for multiparametric quadratic programming and explicit MPC solutions, Automatica 39(3): 489-497. | Zbl 1019.93019

[031] Tvrzska de Gouvea M. and Odloak D. (1998). One-layer real time optimization of LPG production in the FCC unit: Procedure, advantages and disadvantages, Computers and Chemical Engineering 22(Supplement 1): S191-S198.

[032] Venkatasubramanian V., Rengaswamy R., Yin K. and Kavuri, S. (2003). A review of process fault detection and diagnosis, Computers and Chemical Engineering 27(3): 293-346.

[033] Yen G. and Ho L. (2003). Online multiple-model-based fault diagnosis and accommodation, IEEE Transactions on Industrial Electronics 50(2): 296-312.

[034] Zanin A., de Gouvea M. T. and Odloak D. (2000). Industrial implementation of a real-time optimization strategy for maximizing production of LPG in a FCC unit, Computers and Chemical Engineering 24(2-7): 525-531.

[035] Zanin A., de Gouvea M. T. and Odloak D. (2002). Integrating real-time optimization into the model predictive controller of the FCC system, Control Engineering Practice 10(8): 819-831.

[036] Zhang Y. (2007). Active fault-tolerant control systems: Integration of fault diagnosis and reconfigurable control, in J. Korbicz, K. Patan and M. Kowal (Eds), Fault Diagnosis and Fault Tolerant Control, Academic Publishing House EXIT, Warsaw, pp. 21-41.