Fault diagnosis of networked control systems
Christophe Aubrun ; Dominique Sauter ; Joseph Yamé
International Journal of Applied Mathematics and Computer Science, Tome 18 (2008), p. 525-537 / Harvested from The Polish Digital Mathematics Library

Networked Control Systems (NCSs) deal with feedback control systems with loops closed via data communication networks. Control over a network has many advantages compared with traditionally controlled systems, such as a lower implementation cost, reduced wiring, simpler installation and maintenance and higher reliability. Nevertheless, the networkinduced delay, packet dropout, asynchronous behavior and other specificities of networks will degrade the performance of closed-loop systems. In this context, it is necessary to develop a new theory for systems that operate in a distributed and asynchronous environment. Research on Fault Detection and Isolation (FDI) for NCSs has received increasing attention in recent years. This paper reviews the state of the art in this topic.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:207905
@article{bwmeta1.element.bwnjournal-article-amcv18i4p525bwm,
     author = {Christophe Aubrun and Dominique Sauter and Joseph Yam\'e},
     title = {Fault diagnosis of networked control systems},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {18},
     year = {2008},
     pages = {525-537},
     zbl = {1154.90336},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv18i4p525bwm}
}
Christophe Aubrun; Dominique Sauter; Joseph Yamé. Fault diagnosis of networked control systems. International Journal of Applied Mathematics and Computer Science, Tome 18 (2008) pp. 525-537. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv18i4p525bwm/

[000] Aström K. J. and Wittenmark B. (1984). Computer Controlled Systems: Theory and Design, Prentice-Hall, Englewoods Cliffs, NJ.

[001] Branicky M. S., Phillips S. M. and Zhang W. (2000). Stability of networked control systems: Explicit analysis of delay, Proceedings of the American Control Conference, Vol. 4, Chicago, IL, USA, pp. 2352-2357.

[002] Brockett R. W. and Liberzon D. (2000). Quantized feedback stabilization of linear systems, IEEE Transactions on Automatic Control 45(7): 1279-1289. | Zbl 0988.93069

[003] Chen J. and Patton R. J. (1999). Robust Model-Based Fault Diagnosis for Dynamic Systems, Kluwer Academic Publishers, Boston, MA. | Zbl 0920.93001

[004] Chen W. and Saif M. (2006). An iterative learning observer for fault detection and accommodation in nonlinear time-delay systems, International Journal of Robust and Nonlinear Control 16(1): 1-19. | Zbl 1127.93335

[005] Cheng C. and Zhao Q. (2004). Reliable control of uncertain delayed systems with integral quadratic constraints, IEE Proceedings Control Theory Applications 151(6): 790-796.

[006] Delchamps D. F. (1989). Extracting state information from a quantized output record, System and Control Letters 13(5): 365-372. | Zbl 0697.93012

[007] Ding S. X., Jeinsch T., Frank P. M. and Ding E. L. (2000a). A unified approach to the optimization of fault detection systems, International Journal of Adaptive Control and Signal Processing 14(7): 725-745. | Zbl 0983.93016

[008] Ding S. X., Ding E. L. and Jeinsch T. (2002b). A new optimization approach to the design of fault detection filters, Proceedings of the IFAC Symposium SAFEPROCESS, Budapest, Hungary, pp. 250-255.

[009] Ding S. X. and Zhang P. (2006). Observer based monitoring for distributed networked control systems, Proceedings of the IFAC Symposium SAFEPROCESS, Beijing, China, pp. 337-342.

[010] Elia N. and Mitter S. K. (2000). Quantized linear systems in System Theory: Modeling, Analysis, and Control, Kluwer, Boston, MA.

[011] Frank P. M. (1990). Fault diagnosis in dynamic systems using analytical and knowledge based redundancy - A survey and some new results, Automatica 26:(3): 459-474. | Zbl 0713.93052

[012] Gertler J. (1998). Fault Dectection and Diagnosis in Engineering Systems, Marcel Dekker, New York, NY.

[013] Gahinet P., Nemirovski A., Laub A. J. and Chilali M. (1995). LMI Control Toolbox for Use with Matlab, The Math Works Inc.

[014] Halevi Y. and Ray A. (1988). Integrated communication and control systems: Part I - Analysis, ASME Journal of Dynamic Systems, Measurement and Control 110(4): 367-373.

[015] Hokayem P. F. and Abdallah C. T. (2004). Inherent issues in networked control systems: A survey, Proceeding of the 2004 American Control Conference, Boston, MA, USA, pp. 4897-4902.

[016] Hristu D. (1999). Optimal Control with Limited Communication, Ph.D. thesis, Harvard University. | Zbl 0948.93034

[017] Hu S.-S. and Zhu Q.-X. (2003). Stochastic optimal control and analysis of stability of networked control systems with long delay, Automatica 39(11): 1877-1884. | Zbl 1175.93240

[018] Ishii H. and Francis H. (2002). Stabilization with control networks, Automatica 38(10): 1745-1751. | Zbl 1011.93502

[019] Jiang B., Straroswiecki M. and Cocquempot V. (2002). Fault identification for a class of time-delay systems, Proceedings of the American Control Conference, Anchorage, AK, USA, pp. 8-10.

[020] Jiang B., Staroswiecki M. and Cocquempot V. (2003). H∞ fault detection filter design for linear discrete-time systems with multiple time delays, International Journal of Systems Science 34(5): 365-373. | Zbl 1041.93051

[021] Jiang C. and Zhou D. H. (2005). Fault detection and identification for uncertain linear time-delay systems, Computers and Chemical Engineering 30(2): 228-242.

[022] Jiang J. and Zhang Y. M. (2006). Accepting performance degradation in fault-tolerant control system design, IEEE Transaction on Control Systems Technology 14(2): 284-292.

[023] Koenig D., Bedjaoui N. and Litrico X. (2005). Unknown input observers design for time-delay systems application to an open-channel, Proceedings of the 44th IEEE Conference on Decision and Control and the European Control Conference 2005, Seville, Spain, pp. 5794-5799.

[024] Lawden D.F. (2006). Analytical Methods of Optimization, Dover Publications, Inc., New York, NY. | Zbl 1227.49001

[025] Li S., Wang Z. and Sun Y. (2004). Observer-based compensator design for networked control systems with long time delays, Proceedings of the 30th Annual Conference of IEEE Industrial Electronics Society, Busan, Korea, pp. 678-683.

[026] Li S., Yu L., Wang Z. and Sun Y. (2005). LMI approach to guaranteed cost control for networked control systems, Developments in Chemical Engineering and Mineral Processing 13 (3/4): 351-361.

[027] Li S., Sauter D. and Aubrun C. (2006a). Robust fault isolation filter design for networked control systems, Proceedings of the 11th IEEE International Conference on Emerging Technologies and Factory Automation, Prague, Czech Republic, pp. 681-688.

[028] Li S., Wang Y., Xia F. and Sun Y. (2006b). Guaranteed cost control of networked control systems with time-delays and packet losses, International Journal of Wavelets, Multiresolution and Information Processing 4(4): 691-706. | Zbl 1143.93352

[029] Li S., Sauter D., Aubrun C. and Yamé J.-J. (2007). Stability guaranteed active fault tolerant control of networked control systems, Proceedings of the European Control Conference, Kos, Greece, pp. 180-186. | Zbl 1229.93067

[030] Lincoln B. and Bernhardsson B. (2000). Optimal control over networks with long random delays, Proceedings of the International Symposium on Mathematical Theory of Networks and Systems, Perpignan, France, pp. 84-90.

[031] Ling Q. and Lemmon M. D. (2002). Robust performance of soft real-time networked control systems with data dropouts, Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, NV, USA, Vol. 2, pp. 1225-1230.

[032] Liu H., Cheng Y. and Ye H. (2005). A combinative method for fault detection of networked control systems, Proceedings of the 20th IAR/ACD Annual Meeting, Mulhouse, France, pp. 59-63.

[033] Liu J. H. and Frank P. M. (1999). H∞ detection filter design for state delayed linear systems, Proceedings of the 14th IFAC World Congress, Beijing, China, pp. 229-233.

[034] Llanos D., Staroswiecki M., Colomer J. and Melendez J. (2006). h detection filter design for state delayed linear systems, Proceedings of the IFAC Symposium SAFEPROCESS, Beijing, China, pp. 180-181.

[035] Mahmoud M., Jiang J. and Zhang Y. (2003). Stabilization of active fault tolerant control systems with imperfect fault detection and diagnosis, Stochastic Analysis and Applications 21(3): 673-701. | Zbl 1118.93353

[036] Maki M., Jiang J. and Hagino K. (2004). A stability guaranteed active fault-tolerant control against actuator failures, International Journal of Robust and Nonlinear Control 14(12): 1061-1077. | Zbl 1057.93018

[037] Mangoubi R. S. and Edelmayer A. M. (2000). Model-based fault detection: The optimal past, the robust present and a few thoughts on the future, Proceedings of SAFEPROCESS, Budapest, Hungary, pp. 64-75.

[038] Nair G. N. and Evans R. J. (1997). State estimation via a capacity-limited communication channel, Proceedings of the Conference on Decision and Control, San Diego, CA, USA, pp. 866-871.

[039] Nilsson J. (1998). Real-Time Control Systems with Delays, Ph.D. thesis, Lund University. | Zbl 0908.93073

[040] Nilsson J., Bernhardsson B. and Wittermark B. (1998). Stochastic analysis and control of real-time systems with random time delays, Automatica 34(1): 57-64. | Zbl 0908.93073

[041] Ray A. and Halevi Y. (1988). Integrated Communication and Control Systems: Part II - Design Considerations, ASME Journal of Dynamic Systems, Measurement and Control 110 (4): 374-381.

[042] Sahai A. (2000). Evaluating channels for control capacity reconsidered, Proceedings of the American Control Conference, Chicago, IL, USA, pp. 2358-2362.

[043] Sauter D. and Boukhobza T. (2006). Robustness against unknown networked induced delays of observer based, Proceedings of the 6th IFAC Symposium on Fault Detection and Safety of Technical Processes, Beijing, China, pp. 331-336.

[044] Savkin A. V. and PetersenI. R. (2003). Set-valued state estimation via a limited capacity communication channel, IEEE Transactions on Automatic Control 48(4): 676-680.

[045] Seiler P. and Sengupta R. (2005). An H∞ approach to networked control, IEEE Transactions on Automatic Control 50(3): 356-364.

[046] Seiler P. J. (2001). Coordinated Control of Unmanned Aerial Vehicles, Ph.D. thesis, University of California at Berkeley.

[047] Seo C. and Kim B. (1996). Robust and reliable H∞ control for linear systems with parameter uncertainty and actuator failure, Automatica 32(3): 465-467. | Zbl 0850.93214

[048] Sinopoli B., Schenato L., Franceschetti M., Poolla K., Jordan M. and Sastry S. (2004). Kalman filtering with intermittent observations, IEEE Transactions on Automatic Control 49(9):1453-1464.

[049] Smith S. C. and Seiler P. (2003). Estimation with lossy measurements: Jump estimator for jump systems, IEEE Transactions on Automatic Control 48(12): 2163-2171.

[050] Tatikonda S. (2000). Control Under Communication Constraints, Ph.D. thesis, Massachusetts Institute of Technology.

[051] Tipsuwan Y. and Chow M.-Y. (2003). Control methodologies in networked control systems, Control Engineering Practice 11(10): 1099-1111.

[052] Wang Y. Q., Ye H., Cheng Y. and Wang G. Z. (2006a). Fault detection of NCS based on eigendecomposition and Pade approximation, Proceedings of the IFAC Symposium SAFEPROCESS, Beijing, China, pp. 937-941.

[053] Wang Y. Q., Ye H. and Wang G. Z. (2006b). A new method for fault detection of networked control systems, Proceedings of the 1st IEEE Conference on Industrial Electronics and Applications, Singapore, Republic of Singapore, DOI 10.1109/ICIEA.2007.4318563.

[054] Willsky A. S. (1976). A survey of design methods for failure detection in dynamic systems, Automatica 12(6): 601- 611. | Zbl 0345.93067

[055] Wong W. S. and Brockett R. W. (1997). Systems with finite communication bandwidth constraints - Part I: State estimation problems, IEEE Transactions on Automatic Control 42 (9): 1294-1299. | Zbl 0952.93125

[056] Wu N. E. (1997). Robust feedback design with optimized diagnostic performance, IEEE Transactions on Automatic Control 42 (9): 1264-1268. | Zbl 0887.93021

[057] Xiao L., Hassibi A. and How J. (2000). Control with random communication delays via a discrete-time jump system approach, Proceedings of the American Control Conference Chicago, IL, USA, Vol. 3, pp. 2199-2204.

[058] Xu Y. (2006). Communication Scheduling Methods for Estimation over Networks, Ph.D. thesis, University of California, Santa Barbara.

[059] Yang H. L. and Saif M. (1998). Observer design and fault diagnosis for state-retarded dynamical systems, Automatica 34 (2): 217-227. | Zbl 0963.93507

[060] Yang T. C. (2006). Networked control system: A brief survey. IEE Proceedings Control Theory and Applications 153 (4): 403-412.

[061] Ye H. and Ding S. X. (2004). Fault detection of networked control systems with network-induced delay, Proceedings of the 8th International Conference on Control, Automation, Robotics and Vision, Kunming, China, pp. 294-297.

[062] Ye H. and Wang Y. Q. (2006). Application of parity relation and statinary wavelet transform to fault detection of networked control system, Proceedings of the 1st IEEE Conference on Indutrial Electronics and Applications, Singapore, Republic of Singapore, DOI 10.1109/ICIEA.2006.257272.

[063] Ye H., Wang G. Z. and Ding S. X. (2004). A new parity space approach for fault detection based on stationary wavelet transform, IEEE Transactions on Automatic Control, 49 (2): 281-287.

[064] Ye H., He R., Liu H. and Wang G. Z. (2006). A new approach for fault detection of networked control systems. Proceedings of the IFAC 14th Symposium on System Identification, Newcastle, Australia, pp. 654-659.

[065] Yu M., Wang L., Chu T. and Hao F. (2005). Stabilization of networked control systems with packet dropout and transimission delays: Continuoust-time case, European Journal of Control 11(1): 40-49. | Zbl 1293.93622

[066] Yue D., Han Q.-L. and Lam J. (2005). Network-based robust H∞ control of systems with uncertainty, Automatica 41(6): 999-1007. | Zbl 1091.93007

[067] Zhang L., Shi Y., Chen T. and Huang B. (2005). A new method for stabilization of networked control systems with random delays, IEEE Transactions on Automatic Control 50 (8): 1177-1181.

[068] Zhang P. and Ding S. X. (2006). Fault detection of networked control systems with limited communication, Proceedings the IFAC Symposium of SAFEPROCESS, Beijing, China, pp. 1135-1140.

[069] Zhang P., Ding S. X., Frank P. M. and Dader M. (2004). Fault detection of networked control systems with missing measurements, Proceedings of the 5th Asian Control Conference, Melbourne, Australia, pp. 1258-1263.

[070] Zhang W., Branicky M. S. and Phillips S. M. (2001). Stability of networked control systems, IEEE Control Systems Magazine 21 (1):84-99.

[071] Zhang Y. M. and Jiang J. (2002). An active fault-tolerant control system against partial actuator failures, IEE Proceedings C, Control Theory and Applications 149(1): 95-104.

[072] Zhang Y. M. and Jiang J. (2003). Bibliographical review on reconfigurable fault-tolerant control systems, Proceedings of the 5th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes (SAFEPROCESS'03), Washington, DC, USA, pp. 265-276.

[073] Zheng Y. (2003). Fault Diagnosis and Fault Tolerant Control of Networked Control Systems, Ph.D. thesis, Huazhong University of Science and Technology.

[074] Zhong M., Ye H. and Zhou G. W. D. H. (2005). Fault detection filter for linear time-delay systems, Nonlinear Dynamics and Systems Theory 5(3): 273-284. | Zbl 1086.93061

[075] Zhong M., Ye H., Sun T. and Wang G. Z. (2006). An iterative LMI approach to robust fault detection filter for linear system with time-varying delays, Asian Journal of Control, 8(1): 86-90.