Configuring a sensor network for fault detection in distributed parameter systems
Maciej Patan ; Dariusz Uciński
International Journal of Applied Mathematics and Computer Science, Tome 18 (2008), p. 513-524 / Harvested from The Polish Digital Mathematics Library

The problem of fault detection in distributed parameter systems (DPSs) is formulated as that of maximizing the power of a parametric hypothesis test which checks whether or not system parameters have nominal values. A computational scheme is provided for the design of a network of observation locations in a spatial domain that are supposed to be used while detecting changes in the underlying parameters of a distributed parameter system. The setting considered relates to a situation where from among a finite set of potential sensor locations only a subset can be selected because of the cost constraints. As a suitable performance measure, the Ds-optimality criterion defined on the Fisher information matrix for the estimated parameters is applied. Then, the solution of a resulting combinatorial problem is determined based on the branch-and-bound method. As its essential part, a relaxed problem is discussed in which the sensor locations are given a priori and the aim is to determine the associated weights, which quantify the contributions of individual gauged sites. The concavity and differentiability properties of the criterion are established and a gradient projection algorithm is proposed to perform the search for the optimal solution. The delineated approach is illustrated by a numerical example on a sensor network design for a two-dimensional convective diffusion process.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:207904
@article{bwmeta1.element.bwnjournal-article-amcv18i4p513bwm,
     author = {Maciej Patan and Dariusz Uci\'nski},
     title = {Configuring a sensor network for fault detection in distributed parameter systems},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {18},
     year = {2008},
     pages = {513-524},
     zbl = {1155.93426},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv18i4p513bwm}
}
Maciej Patan; Dariusz Uciński. Configuring a sensor network for fault detection in distributed parameter systems. International Journal of Applied Mathematics and Computer Science, Tome 18 (2008) pp. 513-524. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv18i4p513bwm/

[000] Amouroux M. and Babary J. P. (1988). Sensor and control location problems, in M. G. Singh (Ed), Systems & Control Encyclopedia. Theory, Technology, Applications, Vol. 6, Pergamon Press, Oxford, pp. 4238-4245.

[001] Atkinson A. C., Donev A. N. and Tobias R. (2007). Optimum Experimental Design, with SAS, Oxford University Press, Oxford. | Zbl 1183.62129

[002] Bernstein D. S. (2005). Matrix Mathematics. Theory, Facts, and Formulas with Application to Linear Systems Theory, Princeton University Press, Princeton, NJ. | Zbl 1075.15001

[003] Bertsekas D. P. (1999). Nonlinear Programming, 2nd Edn, Athena Scientific, Belmont, MA. | Zbl 1015.90077

[004] Boer E. P. J., Hendrix E. M. T. and Rasch D. A. M. K. (2001). Optimization of monitoring networks for estimation of the semivariance function, in A. C. Atkinson, P. Hackl and W. Müller (Eds), mODa 6, Proceedings of the 6th International Workshop on Model-Oriented Data Analysis, Puchberg/Schneeberg, Austria, Physica-Verlag, Heidelberg, pp. 21-28.

[005] Boyd S. and Vandenberghe L. (2004). Convex Optimization, Cambridge University Press, Cambridge. | Zbl 1058.90049

[006] Cassandras C. G. and Li W. (2005). Sensor networks and cooperative control, European Journal of Control 11(4-5): 436-463. | Zbl 1293.93069

[007] Chiang L. H., Russell E. L. and Braatz R. D. (2001). Fault Detection and Diagnosis in Industrial Systems, Springer-Verlag, London. | Zbl 0982.93005

[008] Fedorov V. V. and Hackl P. (1997). Model-Oriented Design of Experiments, Lecture Notes in Statistics, Springer-Verlag, New York, NY. | Zbl 0878.62052

[009] Floudas C. A. (2001). Mixed integer nonlinear programming, MINLP, in C. A. Floudas and P. M. Pardalos (Eds), Encyclopedia of Optimization, Kluwer Academic Publishers, Dordrecht, Vol. 3, pp. 401-414.

[010] Gerdts M. (2005). Solving mixed-integer optimal control problems by branch&bound: A case study from automobile test-driving with gear shift, Journal of Optimization Theory and Applications 26: 1-18.

[011] Isermann R. (1997). Supervision, Fault Detection and Diagnosis of Technical Systems, Control Engineering Practice 5(5): 639-652.

[012] Korbicz J., Kościelny J., Kowalczuk Z. and Cholewa W. (2004). Fault Diagnosis. Models, Artificial Intelligence, Applications, Springer-Verlag, Berlin. | Zbl 1074.93004

[013] Kubrusly C. S. and Malebranche H. (1985). Sensors and controllers location in distributed systems - A survey, Automatica 21(2): 117-128. | Zbl 0555.93035

[014] Maculan N., Santiago C. P., Macambira E. M. and Jardim M. H. C. (2003). An O(n) algorithm for projecting a vector on the intersection of a hyperplane and a box in Rn, Journal of Optimization Theory and Applications 117(3): 553-574. | Zbl 1115.90397

[015] Omatu S. and Seinfeld J. H. (1989). Distributed Parameter Systems: Theory and Applications, Oxford University Press, New York, NY. | Zbl 0675.93001

[016] Patan M. (2004). Optimal Observation Strategies for Parameter Estimation of Distributed Systems, Zielona Góra University Press. Accessible at http://www.zbc.zgora.pl. | Zbl 1104.93011

[017] Patan M. and Patan K. (2005). Optimal observation strategies for model-based fault detection in distributed systems, International Journal of Control 78(18): 1497-1510. | Zbl 1122.93018

[018] Patan M., Uciński D. and Baranowski P. (2005). Optimal observation strategies for fault detection in distributedparameter systems, Pomiary, Automatyka, Kontrola (9): 71-73.

[019] Patton R. J., Frank P. M. and Clark R. (2000). Issues of Fault Diagnosis for Dynamic Systems, Springer-Verlag, Berlin.

[020] Patton R. J. and Korbicz J. (Eds.) (1999). Advances in Computational Intelligence, International Journal of Applied Mathematics and Computer Science 9 (3). | Zbl 0932.00017

[021] Pázman A. (1986). Foundations of Optimum Experimental Design, D. Reidel Publishing Company, Dordrecht. | Zbl 0588.62117

[022] Pukelsheim F. (1993). Optimal Design of Experiments, John Wiley & Sons, New York, NY. | Zbl 0834.62068

[023] Quereshi Z. H., Ng T. S. and Goodwin G. C. (1980). Optimum experimental design for identification of distributed parameter systems, International Journal of Control 31(1): 21-29. | Zbl 0431.93017

[024] Rafajłowicz E. (1981). Design of experiments for eigenvalue identification in distributed-parameter systems, International Journal of Control 34(6): 1079-1094. | Zbl 0476.93071

[025] Rafajłowicz E. (1983). Optimal experiment design for identification of linear distributed-parameter systems: Frequency domain approach, IEEE Transactions on Automatic Control 28(7): 806-808. | Zbl 0521.93066

[026] Reinefeld A. (2001). Heuristic search, in C. A. Floudas and P. M. Pardalos (Eds), Encyclopedia of Optimization, Kluwer Academic Publishers, Dordrecht, Vol. 2, pp. 409-411.

[027] Russell S. J. and Norvig P. (2003). Artificial Intelligence: A Modern Approach, 2nd Edn, Pearson Education International, Upper Saddle River, NJ. | Zbl 0835.68093

[028] Sun N.-Z. (1994). Inverse Problems in Groundwater Modeling, Kluwer Academic Publishers, Dordrecht.

[029] Uciński D. (1992). Optimal sensor location for parameter identification of distributed systems, International Journal of Applied Mathematics and Computer Science 2(1): 119-134. | Zbl 0762.93022

[030] Uciński D. (1999). Measurement Optimization for Parameter Estimation in Distributed Systems, Technical University Press, Zielona Góra. Available at http://www.zbc.zgora.pl.

[031] Uciński D. (2000). Optimal selection of measurement locations for parameter estimation in distributed processes, International Journal of Applied Mathematics and Computer Science 10(2): 357-379. | Zbl 0965.93041

[032] Uciński D. (2003). On optimum experimental design for technical diagnostics of processes, in Z. Kowalczuk (Ed), Proceedings of 6-th National Conference on Diagnostics of Industrial Processes, Władysławowo, Poland, Technical University Press, Gdańsk, pp. 207-212, (in Polish).

[033] Uciński D. (2005). Optimal Measurement Methods for Distributed-Parameter System Identification, CRC Press, Boca Raton, FL. | Zbl 1155.93003

[034] Uciński D. and Patan M. (2007). D-optimal design of a monitoring network for parameter estimation of distributed systems, Journal of Global Optimization 39(2): 291-322. | Zbl 1180.90173

[035] van de Wal M. and de Jager B. (2001). A review of methods for input/output selection, Automatica 37(4): 487-510. | Zbl 0995.93002

[036] Walter É. and Pronzato L. (1997). Identification of Parametric Models from Experimental Data, Communications and Control Engineering, Springer-Verlag, Berlin. | Zbl 0864.93014