In this paper further results on the development of a S CILAB compatible software package for the analysis and control of repetitive processes is described. The core of the package consists of a simulation tool which enables the user to inspect the response of a given example to an input, design a control law for stability and/or performance, and also simulate the response of a controlled process to a specified reference signal.
@article{bwmeta1.element.bwnjournal-article-amcv18i3p377bwm, author = {\L ukasz H. \L adowski and B\l a\.zej Cichy and Krzysztof Ga\l kowski and Eric Rogers}, title = {On the development of SCILAB compatible software for the analysis and control of repetitive processes}, journal = {International Journal of Applied Mathematics and Computer Science}, volume = {18}, year = {2008}, pages = {377-387}, zbl = {1176.93027}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv18i3p377bwm} }
Łukasz H. Ładowski; Błażej Cichy; Krzysztof Gałkowski; Eric Rogers. On the development of SCILAB compatible software for the analysis and control of repetitive processes. International Journal of Applied Mathematics and Computer Science, Tome 18 (2008) pp. 377-387. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv18i3p377bwm/
[000] Ahn H.-S., Chen Y. and Moore K. L. (2007). Iterative learning control: Brief survey and categorization, IEEE Transactions on Systems, Man and Cybernetics, Part C 37(6): 1109-1121.
[001] Arimoto S., Kawamura S. and Miyazaki F. (1984). Bettering operations of robots by learning, Journal of Robotic Systems 1(2): 123-140.
[002] Benton S. E. (2000). Analysis and Control of Linear Repetitive Processes, Ph. D. thesis, University of Southampton.
[003] Boyd S., Ghaoui L. E., Feron E. and Balakrishnan V. (1994). Linear Matrix Inequalities, SIAM, Philadelphia, PA. | Zbl 0816.93004
[004] Campbell S., Chancelier J. and Nikoukhah R. (2006). Modeling and Simulation in Scilab/Scicos, Springer. | Zbl 1090.65001
[005] D'Andrea R. and Dullerud G. E. (2003). Distributed control design for spatially interconnected systems, IEEE Transactions on Automatic Control 48(1): 1478-1495.
[006] Gałkowski K., Lam J., Rogers E., Xu S., Sulikowski B., Paszke W. and Owens, D. H. (2003). LMI based stability analysis and robust controller design for discrete linear repetitive processes, International Journal of Robust and Nonlinear Control 13(13): 1195-1211. | Zbl 1051.93054
[007] Gomez C., Delebecque F., Bunks C., Chancelier J.-P., Steer S. and Nikoukhah R. (Eds.) (1998). Engineering and Scientific Computing with Scilab with CDROM, Birkhäuser, Boston, MA. | Zbl 0949.68606
[008] Gramacki, J. (1999). Stability Analysis Methods and Stabilization of Linear Discrete Repetitive Processes, Ph. D. thesis, Technical University of Zielona Góra, (in Polish).
[009] Gramacki J., Gramacki A., Gałkowski K. and Rogers E. (2005). Java based toolbox for linear repetitive processes, Proceedings of the 2nd International Conference on Informatics in Control, Automation and Robotics, ICINCO 1: 182-187, Barcelona, Spain, available at: http://www.uz.zgora.pl/~jgramack/LRP/lrp.html. | Zbl 0968.93514
[010] Hładowski Ł., Cichy B., Gałkowski, K., Sulikowski B. and Rogers E. (2006). Scilab compatible software for analysis and control of repetitive processes, Proceedings of the IEEE International Symposium on Computer-Aided Control Systems Design, CACSD 2006, Munich, Germany, pp. 3024-3029.
[011] Hładowski Ł., Gałkowski K. and Rogers E. (2007). A new iterative learning control scheme for linear time-varying discrete systems, Proceedings of the 3rd IFAC Workshop PSYCO'07, Saint Petersburg, Russia, (on CD-ROM).
[012] Melkote H., Cloke B. and Agarwal V. (2003). Modeling and compensator designs for self-servowriting in disk drives, Proceedings of the American Control Conference, Denver, CO, USA, pp. 737-742.
[013] Nikoukhah R., Delebecque F. and Ghaoui L. E. (2008). LMITOOL: A Package for LMI Optimization in S CILAB, available at: http://www.scilab.org/doc/lmidoc/
[014] Nullsoft (2008). NSIS Users Manual, available at: http://nsis.sourceforge.net/Docs/
[015] Owens D. H., Amann N., Rogers E. and French M. (2000). Analysis of linear iterative learning control schemes - A 2D systems/repetitive processes approach, Multidimensional Systems and Signal Processing 11(1-2): 125-177. | Zbl 0987.93046
[016] “IGx89” Lieder, M. (2008). MD5 plugin DLL, derived from the RSA Data Security, Inc. MD5 Message-Digest Algorithm, available at: http://nsis.sourceforge.net/MD5_plugin
[017] Rabenstein R. and Trautmann L. (2003). Towards a framework for continuous and discrete multidimensional systems, International Journal of Applied Mathematics and Computer Science 13(1): 73-85. | Zbl 1043.93005
[018] Ratcliffe J. D., Hatonen J. J., Lewin P. L., Rogers E., Harte T. J. and Owens, D. H. (2005). P-type iterative learning control for systems that contain resonance, International Journal of Adaptive Control and Signal Processing 19(10): 769-796. | Zbl 1127.93365
[019] Ratcliffe J. D., Lewin P. L., Rogers E., Hatonen J. J. and Owens D. H. (2006). Norm-optimal iterative learning control applied to gantry robots for automation applications, IEEE Transactions on Robotics 22(6): 1303-1307.
[020] Rogers E., Gałkowski K. and Owens D. H. (2007). Control Systems Theory and Applications for Linear Repetitive Processes, Springer, Berlin/Heidelberg. | Zbl 1116.93005
[021] Rogers E. and Owens D. H. (1992). Stability Analysis for Linear Repetitive Processes, Springer, New York, NY. | Zbl 0772.93072
[022] Scilab Group, I. M. P. C. (2008). Introduction to S CILAB, available at: http://www.scilab.org/doc/intro/intro.pdf
[023] Sulikowski B. (2006). Computational Aspects in Analysis and Synthesis of Repetitive Processes, Ph. D. thesis, University of Zielona Góra.