This paper presents a method for training a Fourier series neural network on the basis of the multidimensional discrete Fourier transform. The proposed method is characterized by low computational complexity. The article shows how the method can be used for modelling dynamic systems.
@article{bwmeta1.element.bwnjournal-article-amcv18i3p369bwm, author = {Krzysztof Halawa}, title = {Determining the weights of a Fourier series neural network on the basis of the multidimensional discrete Fourier transform}, journal = {International Journal of Applied Mathematics and Computer Science}, volume = {18}, year = {2008}, pages = {369-375}, zbl = {1177.92002}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv18i3p369bwm} }
Krzysztof Halawa. Determining the weights of a Fourier series neural network on the basis of the multidimensional discrete Fourier transform. International Journal of Applied Mathematics and Computer Science, Tome 18 (2008) pp. 369-375. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv18i3p369bwm/
[000] Bracewell R. (1999). The Fourier Transform and Its Applications, 3rd Edn., McGraw-Hill, New York, NY. | Zbl 0149.08301
[001] Chu E. and George A. (2000). Inside the FFT Black Box: Serial and Parallel Fast Fourier Transform Algorithms, CRC Press, Boca Raton, FL. | Zbl 0935.65149
[002] Dutt A. and Rokhlin V. (1993). Fast Fourier transforms for nonequispaced data, Journal of Scientific Computing 14(6): 1368-1393. | Zbl 0791.65108
[003] Gonzalez R. C. and Woods R. E. (1999). Digital Image Processing, 2nd Edn., Prentice-Hall, Inc., Boston, MA.
[004] Halawa K. (2008). Fast method for computing outputs of Fourier neutral networks, in: K. Malinowski and L. Rutkowski, Eds., Control and Automation: Current Problems and Their Solutions, EXIT, Warsaw, pp. 652-659, (in Polish).
[005] Hyvarinen A. and Oja E. (2000). Independent component analysis: Algorithms and applications, Neural Networks 13(4): 411-430.
[006] Joliffe I. T. (1986). Principal Component Analysis, Springer-Verlag, New York, NY.
[007] Kegl B., Krzyżak A., Linder T. and Zeger K. (2000). Learning and design of principal curves, IEEE Transactions on Pattern Analysis and Machine Intelligence 22(13): 281-297.
[008] Li H. and Sun Y. (2005). The study and test of ICA algorithms, Proceedings of the International Conference on Wireless Communications, Networking and Mobile Computing, Wuhan, China, pp. 602-605.
[009] Liu Q. H. and Nyguen N. (1998). An accurate algorithm for nonuniform fast Fourier transforms, Microwave and Guided Wave Letters 8(1): 18-20.
[010] Nelles O. (2001). Nonlinear System Identification: From Classical Approaches to Neural Network and Fuzzy Models, Springer-Verlag, Berlin. | Zbl 0963.93001
[011] Rafajłowicz E. and Pawlak M. (1997). On function recovery by neural networks based on orthogonal expansions, Nonlinear Analysis, Theory and Applications 30(3): 1343-1354. | Zbl 0889.68128
[012] Rafajłowicz E. and Skubalska-Rafajłowicz E. (1993). FFT in calculating nonparametric regression estimate based on trigonometric series, International Journal of Applied Mathematics and Computer Science 3(4): 713-720. | Zbl 0802.65145
[013] Sher C. F., Tseng C. S. and Chen, C. (2001). Properties and performance of orthogonal neural network in function approximation, International Journal of Intelligent Systems 16(12): 1377-1392. | Zbl 0997.68105
[014] Tseng C. S. and Chen C. S. (2004). Performance comparison between the training method and the numerical method of the orthogonal neural network in function approximation, International Journal of Intelligent Systems 19(12): 1257-1275. | Zbl 1101.68753
[015] Van Loan C. (1992). Computational Frameworks for the Fast Fourier Transform, SIAM, Philadelphia, PA. | Zbl 0757.65154
[016] Walker J. (1996). Fast Fourier Transforms, CRC Press, Boca Raton, FL. | Zbl 0867.65079
[017] Zhu C., Shukla D. and Paul, F. (2002). Orthogonal functions for system identification and control, in: C.T. Leondes (Ed.), Neural Networks Systems, Techniques and Apllications: Control and Dynamic Systems, Academic Press, San Diego, CA, pp. 1-73.