We survey the so-called behavioral approach to systems and control theory, which was founded by J. C. Willems and his school. The central idea of behavioral systems theory is to put the focus on the set of trajectories of a dynamical system rather than on a specific set of equations modelling the underlying phenomenon. Moreover, all signal components are treated on an equal footing at first, and their partition into inputs and outputs is derived from the system law, in a way that admits several valid cause-effect interpretations, in general.
@article{bwmeta1.element.bwnjournal-article-amcv18i3p265bwm, author = {Eva Zerz}, title = {Behavioral systems theory: A survey}, journal = {International Journal of Applied Mathematics and Computer Science}, volume = {18}, year = {2008}, pages = {265-270}, zbl = {1176.93001}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv18i3p265bwm} }
Eva Zerz. Behavioral systems theory: A survey. International Journal of Applied Mathematics and Computer Science, Tome 18 (2008) pp. 265-270. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv18i3p265bwm/
[000] Aleixo J.C., Polderman J.W. and Rocha P. (2007). Representations and structural properties of periodic systems, Automatica 43(11): 1921-1931. | Zbl 1129.93031
[001] Bourlès H. (2005). Structural properties of discrete and continuous linear time-varying systems, in F. LamnabhiLagarrigue, A. Loria, E. Panteley (Eds.), Advanced Topics in Control Systems Theory, Springer, London. | Zbl 1167.93357
[002] Chyzak F., Quadrat A. and Robertz D. (2005). Effective algorithms for parametrizing linear control systems over Ore algebras, Applicable Algebra in Engineering, Communication and Computing 16(5): 319-376. | Zbl 1109.93018
[003] Fuhrmann P.A. (2002). A study of behaviors, Linear Algebra and its Applications 351-352: 303-380. | Zbl 1030.93010
[004] Fuhrmann P.A., Rapisarda P. and Yamamoto Y. (2007). On the state of behaviors, Linear Algebra and its Applications 424(2-3): 570-614. | Zbl 1114.93007
[005] Ilchmann A. and Mehrmann V. (2005). A behavioral approach to time-varying linear systems, SIAM Journal on Control and Optimization 44(5): 1725-1747. | Zbl 1139.93007
[006] Kuijper M. and Polderman J.W. (2004). Reed-Solomon list decoding from a system-theoretic perspective, IEEE Transactions on Information Theory 50(2): 259-271. | Zbl 1288.94113
[007] Kuijper M., Pinto R., Polderman J.W. and Rocha P. (2006). Autonomicity and the absence of free variables for behaviors over finite rings, Proceedings of the 7th Portuguese Conference on Automatic Control (Controlo 2006), Lisbon, Portugal.
[008] Lomadze V. (2007). When are linear differentiation-invariant spaces differential? Linear Algebra and its Applications 424(2-3): 540-554. | Zbl 1136.93002
[009] Lu P., Liu M. and Oberst U. (2004). Linear recurring arrays, linear systems and multidimensional cyclic codes over quasiFrobenius rings, Acta Applicandae Mathematicae 80(2): 175-198. | Zbl 1082.94017
[010] Oberst U. (1990). Multidimensional constant linear systems, Acta Applicandae Mathematicae 20(1-2): 1-175. | Zbl 0715.93014
[011] Oberst U. (2006). Stability and stabilization of multidimensional input/output systems, SIAM Journal on Control and Optimization 45(4): 1467-1507. | Zbl 1123.93079
[012] Pillai H.K. and Shankar S. (1999). A behavioral approach to control of distributed systems, SIAM Journal on Control and Optimization 37(2): 388-408. | Zbl 0919.93020
[013] Polderman J.W. and Willems J.C. (1998): Introduction to Mathematical Systems Theory, Springer, New York, NY. | Zbl 0940.93002
[014] Pommaret J.F. and Quadrat A. (1998). Generalized Bézout identity, Applicable Algebra in Engineering, Communication and Computing 9(2): 91-116. | Zbl 1073.93516
[015] Pommaret J.F. and Quadrat A. (1999). Algebraic analysis of linear multidimensional control systems, IMA Journal of Mathematical Control and Information 16(3): 275-297. | Zbl 1158.93319
[016] Praagman C., Trentelman H.L. and Zavala Yoe R. (2007). On the parametrization of all regularly implementing and stabilizing controllers, SIAM Journal on Control and Optimization 45(6): 2035-2053. | Zbl 1126.93011
[017] Rapisarda P. and Willems J.C. (1997). State maps for linear systems, SIAM Journal on Control and Optimization 35(3): 1053-1091. | Zbl 0884.93006
[018] Rocha P. (1990). Structure and representation of 2-D systems, Ph. D. thesis, University of Groningen.
[019] Rocha P. and Wood J. (1997). A new perspective on controllability properties for dynamical systems, International Journal of Applied Mathematics and Computer Science 7(4): 869-879. | Zbl 0908.93011
[020] Shankar S. (2002). The evolution of the concept of controllability, Mathematical and Computer Modelling of Dynamical Systems 8(4): 397-406. | Zbl 1043.93008
[021] Valcher M.E. and Willems J.C. (1999). Observer synthesis in the behavioral approach, IEEE Transactions on Automatic Control 44(12): 2297-2307. | Zbl 1136.93340
[022] Willems J.C. (1986/87). From time series to linear system. Part I: Automatica 22: 561-580, Part II: Automatica 22: 675-694, Part III: Automatica 23: 87-115. | Zbl 0604.62090
[023] Willems J.C. (1991). Paradigms and puzzles in the theory of dynamical systems, IEEE Transactions of Automatic Control 36(3): 259-294. | Zbl 0737.93004
[024] Willems J.C. and Yamamoto Y. (2007). Representations of linear time-invariant behaviors by rational functions, Linear Algebra and its Applications 425(2-3): 226-241. | Zbl 1123.93011
[025] Wood J., Rogers E. and Owens D.H. (1999). Controllable and autonomous nD linear systems, Multidimensional Systems and Signal Processing 10(1): 33-69. | Zbl 0920.93023
[026] Wood J. (2000). Modules and behaviours in nD systems theory, Multidimensional Systems and Signal Processing 11(1-2): 11-48. | Zbl 0963.93015
[027] Zerz E. (2000). Topics in Multidimensional Linear Systems Theory, Springer, London. | Zbl 1002.93002
[028] Zerz E. (2006). An algebraic analysis approach to linear timevarying systems, IMA Journal of Mathematical Control and Information 23(1): 113-126. | Zbl 1106.93019
[029] Zerz E. (2007). Autonomy properties of multidimensional linear systems over rings, Proceedings of the 5th International Workshop on Multidimensional Systems (NDS 2007), Aveiro, Portugal. | Zbl 1142.93018