Inferring graph grammars by detecting overlap in frequent subgraphs
Jacek P. Kukluk ; Lawrence B. Holder ; Diane J. Cook
International Journal of Applied Mathematics and Computer Science, Tome 18 (2008), p. 241-250 / Harvested from The Polish Digital Mathematics Library

In this paper we study the inference of node and edge replacement graph grammars. We search for frequent subgraphs and then check for an overlap among the instances of the subgraphs in the input graph. If the subgraphs overlap by one node, we propose a node replacement graph grammar production. If the subgraphs overlap by two nodes or two nodes and an edge, we propose an edge replacement graph grammar production. We can also infer a hierarchy of productions by compressing portions of a graph described by a production and then inferring new productions on the compressed graph. We validate the approach in experiments where we generate graphs from known grammars and measure how well the approach infers the original grammar from the generated graph. We show graph grammars found in biological molecules, biological networks, and analyze learning curves of the algorithm.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:207881
@article{bwmeta1.element.bwnjournal-article-amcv18i2p241bwm,
     author = {Jacek P. Kukluk and Lawrence B. Holder and Diane J. Cook},
     title = {Inferring graph grammars by detecting overlap in frequent subgraphs},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {18},
     year = {2008},
     pages = {241-250},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv18i2p241bwm}
}
Jacek P. Kukluk; Lawrence B. Holder; Diane J. Cook. Inferring graph grammars by detecting overlap in frequent subgraphs. International Journal of Applied Mathematics and Computer Science, Tome 18 (2008) pp. 241-250. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv18i2p241bwm/

[000] Ates K., Kukluk J., Holder L., Cook D. and Zhang K. (2006). Graph grammar induction on structural data for visual programming, Proceedings of the Conference Tools with Artificial Intelligence, Washington DC, USA, pp. 232-242.

[001] Chomsky N. (1956). Three models of language, IRE Transactions on Information Theory 2(3): 113-24. | Zbl 0156.25401

[002] Cook D. and Holder L. (1994). Substructure discovery using minimum description length and background knowledge, Journal of Artificial Intelligence Research 1: 231-255.

[003] Cook D. and Holder L. (2000). Graph-based data mining, IEEE Intelligent Systems 15(2): 32-41.

[004] Jeltsch E. and Kreowski H. (1990). Grammatical inference based on hyperedge replacement. Graph-Grammars, Lecture Notes in Computer Science 532: 461-474. | Zbl 0768.68082

[005] Jonyer I., Holder L. and Cook C. (2002). Concept formation using graph grammars, Proceedings of the KDD Workshop on Multi-Relational Data Mining, Edmonton, Alberta, Canada, pp. 71-79.

[006] Jonyer I., Holder L. and Cook D. (2004). MDL-based contextfree graph grammar induction and applications, International Journal of Artificial Intelligence Tools, 13(1): 65-79.

[007] Kanehisa M., Goto S., Hattori M., Aoki-Kinoshita K.F., Itoh M., Kawashima S., Katayama T., Araki M. and Hirakawa M. (2006). From genomics to chemical genomics: New developments in KEGG, Nucleic Acids Res. 34: D354-357.

[008] Kukluk J., Holder L. and Cook D. (2006). Inference of node replacement recursive graph grammars, Proceedings of the 6-th SIAM International Conference on Data Mining, Washington, USA, pp. 544-548.

[009] Kukluk J., Hun You C., Holder L. and Cook D. (2007). Learning node replacement graph grammars in metabolic pathways, International Conference on Bioinformatics & Computational Biology, (BIOCOMP'07), Las Vegas, NV, USA, pp. 44-50.

[010] Kuramochi M. and Karypis G. (2001). Frequent subgraph discovery, Proceedings of the IEEE 2001 International Conference on Data Mining (ICDM '01), San Jose, CA, USA, pp. 313-320.

[011] Neidle S. (Ed.) (1999). Oxford Handbook of Nucleic Acid Structure, Oxford, Oxford University Press.

[012] Nevill-Manning G. and Witten H. (1997). Identifying hierarchical structure in sequences: A linear-time algorithm, Journal of Artificial Intelligence Research, 7: 67-82. | Zbl 0894.68072

[013] Phan A., Kuryavyi V., Ma J., Faure A., Andreola M. and Patel D. (2005). An interlocked dimeric parallel-stranded DNA quadruplex: A potent inhibitor of HIV-1 integrase, Proceedings of the National Academy of Sciences 102(3): 634-639.

[014] Oates T., Doshi S. and Huang F. (2003). Estimating maximum likelihood parameters for stochastic context-free graph grammars, Lecture Notes in Artificial Intelligence 2835: 281-298. | Zbl 1263.68059

[015] Rissanen J. (1989). Stochastic Complexity in Statistical Inquiry. World Scientific Company. | Zbl 0800.68508

[016] Yan X. and Han J., gSpan (2002): Graph-based substructure pattern mining, Proceedings of the IEEE International Conference on Data Mining, Maebashi City, Japan, pp. 721-724.