The appropriate choice of the forms of Lyapunov functions for a positive 2D Roesser model is addressed. It is shown that for the positive 2D Roesser model: (i) a linear form of the state vector can be chosen as a Lyapunov function, (ii) there exists a strictly positive diagonal matrix P such that the matrix A^{T}PA-P is negative definite. The theoretical deliberations will be illustrated by numerical examples.
@article{bwmeta1.element.bwnjournal-article-amcv17i4p471bwm, author = {Kaczorek, Tadeusz}, title = {The choice of the forms of Lyapunov functions for a positive 2D Roesser model}, journal = {International Journal of Applied Mathematics and Computer Science}, volume = {17}, year = {2007}, pages = {471-475}, zbl = {1234.93089}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv17i4p471bwm} }
Kaczorek, Tadeusz. The choice of the forms of Lyapunov functions for a positive 2D Roesser model. International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) pp. 471-475. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv17i4p471bwm/
[000] Benvenuti L. and Farina L. (2004): A tutorial on the positive realization problem. IEEE Transactions on Automatic Control, Vol.49, No.5, pp.651-664.
[001] Bose N. K. (1985): Multidimensional Systems Theory Progress, Directions and Open Problems, Dordrecht: D. Reidel Publishing Co. | Zbl 0562.00017
[002] Farina L. and Rinaldi S. (2000): Positive Linear Systems. Theory and Applications. New York: Wiley. | Zbl 0988.93002
[003] Fornasini E. and Marchesini G. (1978): Double indexed dynamical systems. Mathematical Systems Theory, Vol.12, pp.59-72. | Zbl 0392.93034
[004] Fornasini E. and Marchesini G. (1976): State-space realization theory of two- dimensional filters. IEEE Transactions on Automatic Control, Vol.AC-21, pp.484-491. | Zbl 0332.93072
[005] Fornasini E. and Valcher M.E. (1996): On the spectral and combinatorial structure of 2D positive systems. Linear Algebra and Its Applications, Vol.245, pp.223-258. | Zbl 0857.93051
[006] Fornasini E. and Valcher M.E. (1997): Recent developments in 2D positive systems theory. International Journal of Applied Mathematics and Computer Science, Vol.7, No.4, pp.101-123. | Zbl 0913.93032
[007] Galkowski K. (1997): Elementary operation approach to state space realization of 2D systems. IEEE Transaction on Circuits and Systems, Vol.44, No.2, pp.120-129. | Zbl 0874.93028
[008] Kaczorek T. (1999): Externally positive 2D linear systems. Bulletin of the Polish Academy of Sciences: Technical Sciences, Vol.47, No.3, pp.227-234. | Zbl 0987.93044
[009] Kaczorek T. (1996): Reachability and controllability of non-negative 2D Roesser type models. Bulletin of the Polish Academy of Sciences: Technical Sciences, Vol.44, No.4, pp.405-410. | Zbl 0888.93009
[010] Kaczorek T. (2000): Positive 1D and 2D Systems. London: Springer. | Zbl 0978.93003
[011] Kaczorek T. (2002): When the equilibrium of positive 2D Roesser model are strictly positive. Bulletin of the Polish Academy of Sciences: Technical Sciences, Vol.50, No.3, pp.221-227. | Zbl 1138.93319
[012] Kaczorek T. (1985): Two-Dimensional Linear Systems. Berlin: Springer. | Zbl 0593.93031
[013] Klamka J. (1999): Controllability of 2D linear systems, In: Advances in Control Highlights of ECC 1999 (P.M. Frank, Ed.), Berlin: Springer, pp.319-326.
[014] Klamka J. (1991): Controllability of dynamical systems. Dordrecht: Kluwer. | Zbl 0732.93008
[015] Kurek J. (1985): The general state-space model for a two-dimensional linear digital systems. IEEE Transactions on Automatic Control, Vol.-30, No.2, pp.600-602. | Zbl 0561.93034
[016] Kurek J. (2002): Stability of positive 2D systems described by the Roesser model. IEEE Transactions on Circuits and Systems I, Vol.49, No.4, pp.531-533.
[017] Roesser R.P. (1975) A discrete state-space model for linear image processing. IEEE Transactions on Automatic Control, Vol.AC-20, No.1, pp.1-10. | Zbl 0304.68099
[018] Valcher M.E. and Fornasini E. (1995): State models and asymptotic behaviour of 2D Roesser model. IMA Journal on Mathematical Control and Information, No.12, pp.17-36 | Zbl 0840.93047