Genuinely multi-dimensional non-dissipative finite-volume schemes for transport
Després, Bruno ; Lagoutière, Frédéric
International Journal of Applied Mathematics and Computer Science, Tome 17 (2007), p. 321-328 / Harvested from The Polish Digital Mathematics Library

We develop a new multidimensional finite-volume algorithm for transport equations. This algorithm is both stable and non-dissipative. It is based on a reconstruction of the discrete solution inside each cell at every time step. The proposed reconstruction, which is genuinely multidimensional, allows recovering sharp profiles in both the direction of the transport velocity and the transverse direction. It constitutes an extension of the one-dimensional reconstructions analyzed in (Lagoutière, 2005; Lagoutière 2006)

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:207839
@article{bwmeta1.element.bwnjournal-article-amcv17i3p321bwm,
     author = {Despr\'es, Bruno and Lagouti\`ere, Fr\'ed\'eric},
     title = {Genuinely multi-dimensional non-dissipative finite-volume schemes for transport},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {17},
     year = {2007},
     pages = {321-328},
     zbl = {1149.65068},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv17i3p321bwm}
}
Després, Bruno; Lagoutière, Frédéric. Genuinely multi-dimensional non-dissipative finite-volume schemes for transport. International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) pp. 321-328. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv17i3p321bwm/

[000] Després B. and Lagoutière F. (2001): Generalized Harten formalism and longudinal variation diminishing schemes for linear advection on arbitrary grids. ESAIM: Mathematical Modelling and Numerical Analysis, Vol.35, No.6, pp.1159-1183. | Zbl 1005.76063

[001] Després B. and Lagoutière F. (2001): Contact discontinuity capturing schemes for linear advection and compressible gasdynamics. Journal of Scientific Computing. Vol.16, No.4, pp.479-524. | Zbl 0999.76091

[002] Després B. and Lagoutière F. (2007): Numerical resolution of a two-componentcompressible fluid model with interfaces. Progress in Computational Fluid Dynamics, (to appear). | Zbl 1152.76443

[003] Lagoutière F. (2005): Stability of reconstruction schemes for scalar hyperbolic conservationlaws. Preprint available at http://www.ann.jussieu.fr/publications/2005/R05004.html.

[004] Lagoutière F. (2006): Non-dissipative reconstruction schemes satisfying entropy inequalities. Preprint available at tt http://www.ann.jussieu.fr/publications/2006/R06017.html.

[005] Mosso S. and Cleancy S. (1995): A geometrical derived priority system for Young's interface reconstruction. Technical Report No.LA-CP-95-0081, Los Alamos National Laboratory.

[006] Noh W.F. and Woodward P.R. (1976): SLIC (Simple Line Interface Calculation). Lecture Notes in Physics, Vol.25, Berlin: Springer, pp.330-339. | Zbl 0382.76084

[007] Youngs D.L. (1984): An interface tracking method for a 3D eulerian hydrodynamics code. Technical Report No.44/92/35, A.W.R.E. Aldermaston.

[008] Zalesak S.T. (1979): Fully multidimensional flux-corrected transport algorithms for fluids. Journal of Computational Physics, Vol.31, No.3, pp.335-362 | Zbl 0416.76002