A family of model predictive control algorithms with artificial neural networks
Ławryńczuk, Maciej
International Journal of Applied Mathematics and Computer Science, Tome 17 (2007), p. 217-232 / Harvested from The Polish Digital Mathematics Library

This paper details nonlinear Model-based Predictive Control (MPC) algorithms for MIMO processes modelled by means of neural networks of a feedforward structure. Two general MPC techniques are considered: the one with Nonlinear Optimisation (MPC-NO) and the one with Nonlinear Prediction and Linearisation (MPC-NPL). In the first case a nonlinear optimisation problem is solved in real time on-line. In order to reduce the computational burden, in the second case a neural model of the process is used on-line to determine local linearisation and a nonlinear free trajectory. Single-point and multi-point linearisation methods are discussed. The MPC-NPL structure is far more reliable and less computationally demanding in comparison with the MPC-NO one because it solves a quadratic programming problem, which can be done efficiently within a foreseeable time frame. At the same time, closed-loop performance of both algorithm classes is similar. Finally, a hybrid MPC algorithm with Nonlinear Prediction, Linearisation and Nonlinear optimisation (MPC-NPL-NO) is discussed.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:207833
@article{bwmeta1.element.bwnjournal-article-amcv17i2p217bwm,
     author = {\L awry\'nczuk, Maciej},
     title = {A family of model predictive control algorithms with artificial neural networks},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {17},
     year = {2007},
     pages = {217-232},
     zbl = {1119.93350},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv17i2p217bwm}
}
Ławryńczuk, Maciej. A family of model predictive control algorithms with artificial neural networks. International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) pp. 217-232. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv17i2p217bwm/

[000] Kesson B. M. and Toivonen H. T. (2006): A neural network model predictive controller. - J. Process Contr., Vol.16, No.3, pp.937-946.

[001] Bacic M., Cannon M. and Kouvaritakis B. (2002): Feedback linearization MPC for discrete-time bilinear systems. - Proc. 15-th IFAC World Congress, Barcelona, Spain, CD-ROM, paper 2391.

[002] Babuška R., Sousa J. M. and Verbruggen H. B.(1999): Predictive control of nonlinear systems based on fuzzy and neural models. - Proc. European Control Conf., Karlsruhe, Germany, CD-ROM, paper F1032-5.

[003] Bazaraa M. S., Sherali J. and Shetty K. (1993): Nonlinear Programming: Theory and Algorithms. - New York: Wiley. | Zbl 0774.90075

[004] Bloemen H.H.J., van den Boom T. J. J. and Verbruggen H. B. (2001): Model-based predictive control for Hammerstein-Wiener systems. - Int. J. Contr., Vol.74, No.5, pp.482-495. | Zbl 1015.93022

[005] Brdyś M.A. and Tatjewski P. (2005): Iterative algorithms for multilayer optimizing control. - London: Imperial CollegePress/World Scientific. | Zbl 1083.93001

[006] Cavagnari L., Magni L. and Scattolini R. (1999): Neural network implementation of nonlinear receding-horizon control.- Neural Comput. Applic., Vol.8, No.1, pp.86-92.

[007] Clarke D. W., Mohtadi C. and Tuffs P. S. (1987): Generalized predictive control - I. The basic algorithm. - Automatica, Vol.23, No.2, pp.137-148. | Zbl 0621.93032

[008] Cutler R. and Ramaker B. (1979): Dynamic matrix control - A computer control algorithm. - Proc. AIChE National Meeting, Houston.

[009] Dutka A. and Ordys A. W. (2004): The optimalnon-linear generalised predictive control by the time-varying approximation.- Proc. 10-th IEEE Int. Conf. Methods and Models in Automation and Robotics, Międzyzdroje, Poland, pp.299-303.

[010] Grimble M.J. and Ordys A.W. (2001): Nonlinear predictive control for manufacturing and robotic applications. - Proc. 7-th IEEE Int. Conf. Methods and Models in Automation and Robotics, Międzyzdroje, Poland, pp.579-592.

[011] Haykin S. (1999): Neural Networks - A Comprehensive Foundation. - Englewood Cliffs, NJ: Prentice Hall. | Zbl 0934.68076

[012] Henson M. A. (1998): Nonlinear model predictive control: Current status and future directions. - Comput. Chemi. Engi., Vol.23, No.2, pp.187-202.

[013] Hornik K., Stinchcombe M. and White H. (1989): Multilayer feed forward networks are universal approximators. - Neural Netw., Vol.2, No.5, pp.359-366.

[014] Hussain M. A. (1999): Review of theapplications of neural networks in chemical process control - Simulation andonline implementation. - Artifi. Intelli. Eng., Vol.13, No.1, pp.55-68.

[015] Kavsek B.K., Skrjanc I. and Matko D. (1997): Fuzzy predictive control of a highly nonlinear pH process. - Comput. Chem. Eng., Vol.21, Supplement, pp.S613-S618.

[016] Kouvaritakis B., Cannon M. and Rosser J. A.(1999): Nonlinear model based predictive control. - Int.J. Contr., Vol.72, No.10, pp.919-928. | Zbl 0984.93038

[017] Liu G. P., Kadirkamanathan V. and Billings S. A. (1998): Predictive control for non-linear systems using neural networks. - Int. J. Contr., Vol.71, No.6, pp.1119-1132. | Zbl 0948.90053

[018] Ławryńczuk M. and Tatjewski P. (2006): An efficient nonlinear predictive control algorithm with neural models and its application to a high-purity distillation process. - Lecture Notes in Artificial Intelligence, Springer, Vol.4029, pp.76-85.

[019] Ławryńczuk M. and Tatjewski P. (2004): A stable dual-mode type nonlinear predictive control algorithm basedon on-line linearisation and quadratic programming. - Proc.10-th IEEE Int. Conf. Methods and Models in Automationand Robotics, Międzyzdroje, Poland, pp.503-510.

[020] Ławryńczuk M. (2003): Nonlinear model predictive control algorithms with neural models. - Ph.D. thesis, Warsaw University of Technology, Warsaw, Poland.

[021] Ławryńczuk M. and Tatjewski P. (2003): An iterative nonlinear predictive control algorithm based on linearisation and neural models. - Proc. European Control Conf., Cambridge, U.K., CD-ROM, paper 339. | Zbl 1151.93342

[022] Ławryńczuk M. and Tatjewski P. (2002): A computationally efficient nonlinear predictive control algorithm based on neural models. - Proc. 8-th IEEE Int. Conf. Methods and Models in Automation and Robotics, Szczecin, Poland, pp.781-786.

[023] Ławryńczuk M. and Tatjewski P. (2001): A multivariable neural predictive control algorithm. - Proc. IFAC Advanced Fuzzy-Neural Control Workshop, Valencia, Spain, pp.191-196.

[024] Maciejowski J.M. (2002): Predictive Control with Constraints. - Harlow, U.K.: Prentice Hall.

[025] Mahfouf M. and Linkens D.A. (1998): Non-linear generalized predictive control (NLGPC) applied to muscle relaxant anaesthesia. - Int. J. Contr., Vol.71, No.2, pp.239-257. | Zbl 0938.93527

[026] Maner B.R., Doyle F.J., Ogunnaike B.A. and Pearson R.K. (1996): Nonlinear model predictive control of a simulated multivariable polymerization reactor using second-order Volterra models. - Automatica, Vol.32, No.9, pp.1285-1301. | Zbl 0875.93324

[027] Michalska H. and Mayne D.Q. (1993): Robust receding horizon control of constrained nonlinear systems. - IEEE Trans. Automat. Cont., Vol.38, No.11, pp.1623-1633. | Zbl 0790.93038

[028] Morari M. and Lee J. (1999): Model predictive control: Past, present and future. - Comput. Chem. Engi.,Vol.23, No.4/5, pp.667-682.

[029] Nørgaard M., Ravn O., Poulsen N. K. and Hansen L.K. (2000): Neural Networks for Modelling and Control of Dynamic Systems. - London: Springer. | Zbl 0953.93003

[030] Osowski S. (1996): Neural Networks - An Algorithmic Approach. - Warsaw, Poland: WNT.

[031] Parisini T., Sanguineti M. and Zoppoli R. (1998): Nonlinear stabilization by receding-horizon neural regulators. - Int. J. Contr., Vol.70, No.3, pp.341-362. | Zbl 0925.93823

[032] Piche S., Sayyar-Rodsari B., Johnson D. and Gerules M.(2000): Nonlinear model predictive control using neural networks. - IEEE Contr. Syst. Mag., Vol.20, No.3, pp.56-62.

[033] Qin S. J. and Badgwell T. (2003): A survey of industrial model predictive control technology. - Contr. Eng. Pract.,Vol.11, No.7, pp.733-764.

[034] Rossiter J. A. (2003): Model-Based Predictive Control. - Boca Raton, FL: CRC Press.

[035] Sriniwas G. R. and Arkun Y.(1997): A global solution to the non-linear model predictive control algorithms using polynomial ARX models. - Comput. Chem. Engi., Vol.21, No.4, pp.431-439.

[036] Tatjewski P. (2007): Advanced Control of Industrial Processes, Structures and Algorithms. - London: Springer. | Zbl 1134.93037

[037] Tatjewski P. and Ławryńczuk M. (2006): Soft computing in model-based predictive control. - Int.J. Appl. Math. Comput. Sci., Vol.16, No.1, pp.101-120. | Zbl 1334.93068

[038] Trajanoski Z. and Wach P. (1998): Neural predictive control for insulin delivery using the subcutaneous route. - IEEE Trans. Biomed. Eng., Vol.45, No.9, pp.1122-1134.

[039] Wang L. X. and Wan F. (2001): Structured neural networks for constrained model predictive control. - Automatica, Vol.37, No.8, pp.1235-1243. | Zbl 0984.93044

[040] Yu D. L. and Gomm J. B. (2003): Implementation of neural network predictive control to a multivariable chemical reactor. - Contr. Eng. Pract., Vol.11, No.11, pp.1315-1323.

[041] Zheng A. (1997): A computationally efficient nonlinear MPC algorithm. - Proc. American Control Conf., Albuquerque, pp.1623-1627