Positive partial realization problem for linear discrete-time systems
Kaczorek, Tadeusz
International Journal of Applied Mathematics and Computer Science, Tome 17 (2007), p. 165-171 / Harvested from The Polish Digital Mathematics Library

A partial realization problem for positive linear discrete-time systems is addressed. Sufficient conditions for the existence of its solution are established. A procedure for the computation of a positive partial realization for a given finite sequence of the values of the impulse response is proposed. The procedure is illustrated by four numerical examples.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:207828
@article{bwmeta1.element.bwnjournal-article-amcv17i2p165bwm,
     author = {Kaczorek, Tadeusz},
     title = {Positive partial realization problem for linear discrete-time systems},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {17},
     year = {2007},
     pages = {165-171},
     zbl = {1119.93370},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv17i2p165bwm}
}
Kaczorek, Tadeusz. Positive partial realization problem for linear discrete-time systems. International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) pp. 165-171. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv17i2p165bwm/

[000] Benvenuti L. and Farina L. (2004): A tutorial on the positive realization problem.- IEEE Trans. Automat. Contr., Vol.49, No.5, pp.651-664.

[001] Farina L. and Rinaldi S. (2000): Positive Linear Systems: Theory and Applications.- Wiley, New York. | Zbl 0988.93002

[002] Ho B.L. and Kalman R.E. (1966): Effective construction of linear state-variable models from input/output functions. - Regelungstechnik, Bd.12, pp.545-548. | Zbl 0145.12701

[003] Kaczorek T. (1992): Linear Control Systems, Vol.1. - Taunton: Research Studies Press. | Zbl 0784.93002

[004] Kaczorek T. (2002): Positive 1D and 2D Systems. - London: Springer. | Zbl 1005.68175

[005] Kaczorek T. (2004): Realization problem for positive discrete-time systems with delay. - System Sci., Vol.30, No.4, pp.17-30. | Zbl 1087.93016

[006] Kaczorek T. (2005): Positive minimal realizations for singular discrete-time systems with delays in state and control. - Bull. Pol. Acad. Sci. Techn. Sci., Vol.53,No.3, pp.293-298. | Zbl 1194.93128

[007] Kaczorek T. (2006a): Realization problem for positive multivariable discrete-time linear systems with delays in the state vector and inputs. - Int. J. Appl. Math. Comput. Sci., Vol.16, No.2, pp.169-174. | Zbl 1111.93051

[008] Kaczorek T. (2006b) A realization problem for positive continuous-time linear systems with reduced number of delay. - Int. J. Appl. Math. Comput. Sci., Vol.16, No.3, pp.325-331. | Zbl 1136.93317

[009] Kaczorek T. (2006c): Computation of realizations of discrete-timecone-systems. - Bull. Polish Acad. Sci. Techn. Sci., Vol.54, No.3, pp.347-350. | Zbl 1194.93129

[010] Kaczorek T. (2006d): A realization problem for positive continuous-time systems with reduced numbers of delays.- Int. J. Appl. Math. Comput. Sci., Vol.16, No.3, pp.101-107.

[011] KaczorekT. (2006e): Minimal positive realization for discrete-time systems with state time-delays. - Int. J. Comput. Math. Electr. Eng. COMPEL, Vol.25, No.4, pp.812-826.

[012] Kaczorek T. and Buslowicz M. (2004): Minimal realization problem for positive multivariable linear systems with delay. - Int. J. Appl. Math. Comput. Sci.,Vol.14, No.2, pp.181-187. | Zbl 1076.93010

[013] Merzyakov J.I. (1963): On the existence of positive solutions of a system of linear equations. - Uspekhi Matematicheskikh Nauk, Vol.18, No.3, pp.179-186 (in Russian)