The problem of computing minimal realizations of a singular system decomposed into a standard dynamical system and a static system of a given improper transfer matrix is formulated and solved. A new notion of the minimal dynamical-static realization is introduced. It is shown that there always exists a minimal dynamical-static realization of a given improper transfer matrix. A procedure for the computation of a minimal dynamical-static realization for a given improper transfer matrix is proposed and illustrated by a numerical example.
@article{bwmeta1.element.bwnjournal-article-amcv17i1p23bwm, author = {Kaczorek, Tadeusz}, title = {Computation of realizations composed of dynamic and static parts of improper transfer matrices}, journal = {International Journal of Applied Mathematics and Computer Science}, volume = {17}, year = {2007}, pages = {23-25}, zbl = {1133.93320}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv17i1p23bwm} }
Kaczorek, Tadeusz. Computation of realizations composed of dynamic and static parts of improper transfer matrices. International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) pp. 23-25. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv17i1p23bwm/
[000] Christodoulou M.A. and Mertzios B.G. (1985): Realization of singular systems via Markov parameters. - Int. J. Contr., Vol.42, No.6, pp. 1433-1441. | Zbl 0602.93015
[001] Kaczorek T. (1992): Linear Control Systems, Vol.1. - New York: Wiley. | Zbl 0784.93002
[002] Kailath T. (1980): Linear Systems. - Englewood Cliffs: Prentice-Hall | Zbl 0454.93001
[003] Roman J.R. and Bullock T.E. (1975): Minimal partial realization in canonical form. - IEEE Trans. Automat. Contr., Vol.AC-20, No.4, pp.529-533. | Zbl 0317.93025
[004] Sinha Naresk K. (1975): Minimal realization of transfer function matrices: A comparative study of different methods. - Int. J. Contr., Vol.22, No.5, pp.627-639. | Zbl 0321.93011
[005] Wolovich W.A. and Guidorsi R. (1977): A general algorithm for determining state-space representations. - Automatica, Vol.13, pp.295-199