Equivalence and reduction of delay-differential systems
Boudellioua, Mohamed
International Journal of Applied Mathematics and Computer Science, Tome 17 (2007), p. 15-22 / Harvested from The Polish Digital Mathematics Library

A new direct method is presented which reduces a given high-order representation of a control system with delays to a first-order form that is encountered in the study of neutral delay-differential systems. Using the polynomial system description (PMD) setting due to Rosenbrock, it is shown that the transformation connecting the original PMD with the first-order form is Fuhrmann's strict system equivalence. This type of system equivalence leaves the transfer function and other relevant structural properties of the original system invariant.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:207817
@article{bwmeta1.element.bwnjournal-article-amcv17i1p15bwm,
     author = {Boudellioua, Mohamed},
     title = {Equivalence and reduction of delay-differential systems},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {17},
     year = {2007},
     pages = {15-22},
     zbl = {1122.93019},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv17i1p15bwm}
}
Boudellioua, Mohamed. Equivalence and reduction of delay-differential systems. International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) pp. 15-22. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv17i1p15bwm/

[000] Boudellioua M.S. (2006): An equivalent matrix pencil for bivariate polynomial matrices. - Int. J. Appl. Math. Comput. Sci., Vol.16, No.2, pp.175-181. | Zbl 1113.15013

[001] Byrnes C.I., Spong M.W. and Tarn T.J. (1984): A several complex variables approach to feedback stabilization of linear neutral delay-differential systems. - Math. Syst. Theory, Vol.17, No.2, pp.97-133. | Zbl 0539.93064

[002] Fuhrmann P.A. (1977): On strict system equivalence and similarity. - Int. J. Contr., Vol.25, No.1, pp.5-10. | Zbl 0357.93009

[003] Johnson D.S. (1993): Coprimeness in multidimensional system theory and symbolic computation. - Ph.D. thesis, Loughborough University of Technology, UK.

[004] Levy B.C. (1981): 2-D polynomial and rational matrices and their applications for the modelling of 2-D dynamical systems. - Ph.D. thesis, Stanford University, USA.

[005] Pugh A.C., McInerney S.J., Boudellioua M.S. and Hayton G.E. (1998a): Matrix pencil equivalents of a general 2-D polynomial matrix.- Int. J. Contr., Vol.71, No.6, pp.1027-1050. | Zbl 0951.93039

[006] Pugh A.C., McInerney S.J., Boudellioua M.S., Johnson D.S. and HaytonG.E. (1998b): A transformation for 2-D linear systems and a generalization of a theorem of Rosenbrock. - Int. J. Contr., Vol.71, No.3, pp.491-503. | Zbl 0987.93010

[007] Pugh A.C., McInerney S.J. and El-Nabrawy E.M.O. (2005a): Equivalence and reduction of 2-D systems.- IEEE Trans. Circ. Syst., Vol.52, No.5, pp.371-275. | Zbl 1213.93070

[008] Pugh A.C., McInerney S.J. and El-Nabrawy E.M.O. (2005b): Zero structures of n-D systems.- Int. J. Contr., Vol.78, No.4, pp.277-285. | Zbl 1213.93070

[009] Pugh A.C., McInerney S.J., Hou M. and Hayton G.E. (1996): A transformation for 2-D systems and its invariants. - Proc. 35th IEEE Conf. Decision and Control, Kobe, Japan, pp.2157-2158.

[010] Rosenbrock H.H. (1970): State Space and Multivariable Theory.- London: Nelson-Wiley. | Zbl 0246.93010

[011] Sebek M. (1988): One more counterexample in n-D systems - Unimodular versus elementary operations. - IEEE Trans. Autom. Contr., Vol.AC-33(5), pp.502-503. | Zbl 0638.93021

[012] Zerz E. (2000): Topics in Multidimensional Linear Systems Theory. - London: Springer | Zbl 1002.93002