Data probes, vertical trajectories and classification: a tentative study
Pearson, David
International Journal of Applied Mathematics and Computer Science, Tome 17 (2007), p. 107-112 / Harvested from The Polish Digital Mathematics Library

In this paper we introduce a method of classification based on data probes. Data points are considered as point masses in space and a probe is simply a particle that is launched into the space. As the probe passes by data clusters, its trajectory will be influenced by the point masses. We use this information to help us to find vertical trajectories. These are trajectories in the input space that are mapped onto the same value in the output space and correspond to the data classes.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:207814
@article{bwmeta1.element.bwnjournal-article-amcv17i1p107bwm,
     author = {Pearson, David},
     title = {Data probes, vertical trajectories and classification: a tentative study},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {17},
     year = {2007},
     pages = {107-112},
     zbl = {1151.68593},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv17i1p107bwm}
}
Pearson, David. Data probes, vertical trajectories and classification: a tentative study. International Journal of Applied Mathematics and Computer Science, Tome 17 (2007) pp. 107-112. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv17i1p107bwm/

[000] Benton T.C. and Hand D.J. (2002): Segmentation into predictable classes. - IMA J. Manag. Math., Vol.13, No.4, pp.245-259. | Zbl 1122.91367

[001] Chiu S.L. (1994): Fuzzy model identification based on cluster estimation. - J. Intell. Fuzzy Syst., Vol.2, No.3, pp.267-278.

[002] Hand D.J., Li H.G. and Adams H.G. (2001): Supervised classification with structured class definitions. - Comput. Stat. Data Anal., Vol.36, No.2, pp.209-225. | Zbl 1080.62526

[003] Hermann R. (1964): Cartan connections and the equivalence problem for geometric structures. - Contrib. Diff. Eqns., Vol.III, No.2, pp.199-248.

[004] Hermann T. and Ritter H. (1999): Listen to your Data: Model-Based Sonification for Data Analysis, In: Advances in Intelligent Computing and Mulimedia Systems, (M.R. Syed, Edi.), International Institute for Advanced Studies in System Research and Cybernetics, pp.189-194.

[005] Isidori A. (1995): Nonlinear Control Systems 3rd Ed.. - London: Springer.

[006] Pearson D.W.(1996): Approximating vertical vector fields for feed forward neural networks. - Appl. Math. Lett., Vol.9, No.2, pp.61-64. | Zbl 0850.93172

[007] Pearson D.W. and Batton-Hubert M. (2005): Increasing confidence in atmospheric pollution forecasting via vertical vector fields. - Journal Européen des Systèmes Automatisés, Vol.39, No.4, pp.553-569