A robust controller design method and stability analysis of an underactuated underwater vehicle
Siong Chin, Cheng ; Wai Shing Lau, Micheal ; Low, Eicher ; Gim Lee Seet, Gerald
International Journal of Applied Mathematics and Computer Science, Tome 16 (2006), p. 345-356 / Harvested from The Polish Digital Mathematics Library

The problem of designing a stabilizing feedback controller for an underactuated system is a challenging one since a nonlinear system is not stabilizable by a smooth static state feedback law. A necessary condition for the asymptotical stabilization of an underactuated vehicle to a single equilibrium is that its gravitational field has nonzero elements corresponding to unactuated dynamics. However, global asymptotical stability (GAS) cannot be guaranteed. In this paper, a robust proportional-integral-derivative (PID) controller on actuated dynamics is proposed and unactuated dynamics are shown to be global exponentially bounded by the Sordalen lemma. This gives a necessary and sufficient condition to guarantee the global asymptotic stability (GAS) of the URV system. The proposed method is first adopted on a remotely-operated vehicle RRC ROV II designed by the Robotic Research Centre in the Nanyang Technological University (NTU). Through the simulation using the ROV Design and Analysis toolbox (RDA) written at the NTU in the MATLAB/SIMULINK environment, the RRC ROV II is robust against parameter perturbations.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:207798
@article{bwmeta1.element.bwnjournal-article-amcv16i3p345bwm,
     author = {Siong Chin, Cheng and Wai Shing Lau, Micheal and Low, Eicher and Gim Lee Seet, Gerald},
     title = {A robust controller design method and stability analysis of an underactuated underwater vehicle},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {16},
     year = {2006},
     pages = {345-356},
     zbl = {1139.93339},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv16i3p345bwm}
}
Siong Chin, Cheng; Wai Shing Lau, Micheal; Low, Eicher; Gim Lee Seet, Gerald. A robust controller design method and stability analysis of an underactuated underwater vehicle. International Journal of Applied Mathematics and Computer Science, Tome 16 (2006) pp. 345-356. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv16i3p345bwm/

[000] Brockett R.W. (1983): Asymptotic stability and feedback stabilization, In: Differential Geometric Control Theory (R.W. Brockett, R.S. Millman and H.J. Sussmann, Eds.). - Boston: Birkhauser, pp. 181-191. | Zbl 0528.93051

[001] Byrnes C. and Isidori A. (1991): On the attitude stabilization of rigid spacecraft. - Automatica, Vol. 27, No. 1, pp. 87-95. | Zbl 0733.93051

[002] Fossen T.I. (1994): Guidance and Control of Ocean Vehicles. - New York: Wiley.

[003] Koh T.H., Lau M.W.S., Low E., Seet G.G.L. and Cheng P.L. (2002a): Preliminary studies of the modeling and control of a twin-barrel under actuated underwater robotic vehicle. - Proc. 7-th Int.Conf. Control, Automation, Robotics Vision, Singapore, pp. 1043-1047.

[004] Koh T.H., Lau M.W.S., Low E., Seet G., Swei S. and Cheng P.L. (2002b): Development and improvement of an underactuated remotely operated vehicle (ROV) . - Proc. MTSIEEE Int. Conf.s Oceans, Biloxi, MS, pp. 2039-2044.

[005] Kreyszig E. (1998): Advanced Engineering Mathematics. - New York:Wiley. | Zbl 0103.27803

[006] Lau M.W.S., Swei S.S.M., Seet S.S.M., Low E. and Cheng P.L. (2003): Control of an underactuated remotely operated underwater vehicle. - Proc. Inst. Mech. Eng., Part 1: J. Syst. Contr., Vol. 217, No. 1, pp. 343-358.

[007] Soodalen O.J. and Egeland O. (1993): Exponential stabilization of chained nonholonomic systems. - Proc. 2-nd European Control Conf., Groningen, The Netherlands, pp. 1438-1443.

[008] Sodalen O.J. and Egeland O. (1995): Exponential stabilization of nonholonomic chained systems. - IEEE Trans. Automat.Contr., Vol. 40, No. 1, pp. 35-49. | Zbl 0828.93055

[009] Sordalen O.J., Dalsmo M. and Egeland O. (1993): An exponentially convergent control law for a nonholonomic underwater vehicle. - Proc. 3-rd Conf. Robotics and Automation, ICRA, Atlanta, Georgia, USA, pp. 790-795.

[010] Wichlund K.Y., Sordalen O.J. and Egeland O. (1995): Control of vehicles with second-order nonholonomic constraints: Underactuated vehicles. - Proc. European Control Conf., Rome, Italy, pp. 3086-3091.

[011] Yuh J. (1990): Modeling and control of underwater robotic vehicles. - IEEE Trans. Syst. Man Cybern., Vol. 20, No. 6, pp. 1475-1483.