A variable structure observer for the control of robot manipulators
Abdessameud, Abdelkader ; Khelfi, Mohamed
International Journal of Applied Mathematics and Computer Science, Tome 16 (2006), p. 189-196 / Harvested from The Polish Digital Mathematics Library

This paper deals with the application of a variable structure observer developed for a class of nonlinear systems to solve the trajectory tracking problem for rigid robot manipulators. The analyzed approach to observer design proposes a simple design methodology for systems having completely observable linear parts and bounded nonlinearities andor uncertainties. This observer is basically the conventional Luenberger observer with an additional switching term that is used to guarantee robustness against modeling errors and system uncertainties. To solve the tracking problem, we use a control law developed for robot manipulators in the full information case. The closed loop system is shown to be globally asymptotically stable based on Lyapunov arguments. Simulation results on a 3-DOF robot manipulator show the asymptotic convergence of the vectors of observation and tracking errors.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:207784
@article{bwmeta1.element.bwnjournal-article-amcv16i2p189bwm,
     author = {Abdessameud, Abdelkader and Khelfi, Mohamed},
     title = {A variable structure observer for the control of robot manipulators},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {16},
     year = {2006},
     pages = {189-196},
     zbl = {1111.93056},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv16i2p189bwm}
}
Abdessameud, Abdelkader; Khelfi, Mohamed. A variable structure observer for the control of robot manipulators. International Journal of Applied Mathematics and Computer Science, Tome 16 (2006) pp. 189-196. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv16i2p189bwm/

[000] Abdessameud A. and Khelfi M.F. (2003): Nonlinear observer design for robot manipulators: A survey. - Proc. 7-th IFAC Symp. Robot Control, SYROCO 03, Wroclaw, Poland, pp. 247-252.

[001] Abdessameud A. and Khelfi M.F. (2005): A variable structure observer for robot manipulators control. - Proc. 11-th IEEE International Conf. Methods and Models in Automation and Robotics, MMAR 05, Miedzyzdroje, Poland, pp. 609-614. | Zbl 1111.93056

[002] Baumann W.T. and Rogh W.J. (1986): Feedback control of nonlinear systems by extended linearization. - IEEE Trans. Automat. Contr., Vol. Ac-31,No. 1, pp. 40-46. | Zbl 0582.93031

[003] Berghuis H. (1993a): Model Based Control: From Theory to Practice. - Ph.D. thesis, University of Twente, the Netherlands.

[004] Berghuis H. and Nijmeijer H. (1993b): Global regulation of robots using only position measurement. - Syst. Contr. Lett., Vol. 21, pp. 289-293. | Zbl 0800.93935

[005] Bornard G. and Hammouri H. (1991): A high-gain observer for a class of uniformly observable systems. - Proc. 30-th Conf. Decision and Control, Brighton, England, pp. 1494-1496.

[006] Canudas de wit C., Astrom K.J. and Fixot N. (1990): Computed torque control via a nonlinear observer. - Int. J. Adap. Contr. Signal Process., Vol. 4, pp. 443-452. | Zbl 0743.93069

[007] Canudas de wit C. and Slotine J.J.E. (1991a): Sliding observers for robot manipulators. - Automatica, Vol. 27, No. 5, pp. 859-864.

[008] Canudas de wit C. and Fixot N. (1991b): Robot control via robust estimated state feedback. - IEEE Trans. Automat. Contr., Vol. AC-36, No. 12, pp. 1497-1501. | Zbl 0752.93046

[009] Canudas de wit C., Fixot N. and Astrom K.J. (1992): Trajectory tracking in robot manipulators via nonlinear estimated state feedback. - IEEE Trans. Robot. Automat., Vol. 8, No. 1, pp. 138-144.

[010] Dawson D.M., Qu Z. and Caroll J.C. (1992): On the observation and output feedback problems for nonlinear uncertain dynamic systems. - Syst. Contr. Lett., Vol. 18,pp. 217-222.

[011] Gauthier J.P. and Bornard G. (1981): Observability of any u(t) of a class of nonlinear system. - IEEE Trans. Automat. Contr., Vol. AC-26, No. 4, pp. 922-926. | Zbl 0553.93014

[012] Gauthier J.P., Hammouri H. and Othman S. (1991): A simple observer for nonlinear system: Applications to bioreactors. - IEEE Trans. Automat. Contr., Vol. 37, No. 6, pp. 875-880. | Zbl 0775.93020

[013] Hammami M.A. (1993): Stabilization of a class of nonlinear systems using an observer design. - Proc. 32-nd IEEE Conf. Decision and Control, San Antonio,Texas, Vol. 3, pp. 1954-1959.

[014] Khelfi M.F., Zasadzinski M., Rafaralahi H. and Darouach M. (1996): Reduced order observer-based point-to-point and trajectory controllers for robot manipulators. - Contr. Eng. Pract., Vol. 4, No. 7, pp. 991-1000.

[015] Khelfi M.F., Zasadzinski M., Benzine A., Belalem G. and Beldjilali B. (1998): Nonlinear observation theory. - Proc. IEEE, SMC, IMACS Multiconf. Computational Engineering in Systems Applications CESA'98, Nabeul-Hammamet, Tunisia, pp. 260-265.

[016] Krener A.J. and Respondek W. (1985): Nonlinear observers with linearized error dynamics. - SIAM J. Contr. Optim., Vol. 23, No. 2, pp. 197-216. | Zbl 0569.93035

[017] Lawrence D.A. (1992): On a nonlinear observer with pseudo-linearized error dynamics.- Proc. 31-st IEEE Conf. Decision and Control, Tucson, USA, pp. 751-756.

[018] Misawa E.A. and Hedrick J.K. (1989): Nonlinear observers-A State of the Art Survey.- Trans. ASME J. Dynam. Syst., Vol. 111, No. 3, pp. 344-352. | Zbl 0695.93106

[019] Nicosia S. and Tomei P. (1990): Robot control by using only joint position measurements. - IEEE Trans. Automat. Contr., Vol. 35, No. 9, pp. 1058-1061. | Zbl 0724.93056

[020] Paden B. and Panja R. (1988): Globally asymptotically stable 'PD +' controller for robot manipulators. - Int. J. Contr., Vol. 47, No. 6, pp. 1697-1712. | Zbl 0649.93052

[021] Slotine J.J.E., Hedrick J.K. and Misawa E.A. (1986): On sliding observers for nonlinear systems. - Proc. American Control Conf., Seattle, USA, pp. 1794-1800. | Zbl 0661.93011

[022] Slotine J.J.E., Hedrick J.K. and Misawa E.A. (1987): On sliding observers for nonlinear systems. - Trans. ASME J. Dynam. Syst. Meas. Contr., Vol. 109, No. 3, pp. 245-252. | Zbl 0661.93011

[023] Tsinias J. (1989): Observer design for non-linear systems. - Syst. Contr. Lett., Vol. 13, pp. 135-142. | Zbl 0684.93006

[024] Walcott B.L. and Żak S.H. (1987a): State observation of nonlinear uncertain dynamical systems. - IEEE Trans. Automat. Contr., Vol. AC-32,No. 2, pp. 166-170. | Zbl 0618.93019

[025] Walcott B.L., Corless M.J. and Żak S.H. (1987b): Comparative study of the nonlinear state-observation techniques. - Int. J. Contr., Vol. 45, No. 6, pp. 2109-2132. | Zbl 0627.93012

[026] Yoshikawa T. (1990): Foundation of Robotics: Analysis and Control. -Cambridge, Massachusetts, MIT Press.