The paper presents a number of unclear, unsolved or partly solved problems of fuzzy logic, which hinder precise transformation of expert knowledge about proper control of a plant in a fuzzy controller. These vague problems comprise the realization of logical and arithmetic operations and another basic problem, i.e., the construction of membership functions. The paper also indicates how some of the above problems can be solved.
@article{bwmeta1.element.bwnjournal-article-amcv16i1p37bwm, author = {Piegat, Andrzej}, title = {What is not clear in fuzzy control systems}, journal = {International Journal of Applied Mathematics and Computer Science}, volume = {16}, year = {2006}, pages = {37-49}, zbl = {1334.93109}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv16i1p37bwm} }
Piegat, Andrzej. What is not clear in fuzzy control systems. International Journal of Applied Mathematics and Computer Science, Tome 16 (2006) pp. 37-49. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv16i1p37bwm/
[000] Borgelt Ch. and Kruse R. (2003): Learning possibilistic graphical models from data. - IEEE Trans. Fuzzy Syst., Vol. 11, No. 2, pp. 159-172.
[001] Civanlar M.R. and Trussel H.J. (1986): Constructing membership functions using statistical data. - Fuzzy Sets Syst., Vol. 18,No. 1, pp. 1-13. | Zbl 0617.94017
[002] Devi B.B. and Sarma V.V.S. (1985): Estimation of fuzzy memberships from histograms. - Inf. Sci., Vol. 35, No. 1, pp. 43-59. | Zbl 0566.68069
[003] Driankov D., Hellendoorn H. and Reinfrank M. (1993): An introductionto fuzzy control. - Berlin, Heidelberg, Springer-Verlag. | Zbl 0789.93088
[004] Dubois D. and Prade H. (1983): Unfair coins and necessity measures: Towards a possibilistic interpretation of histograms. - Fuzzy Sets Syst., Vol. 10, No. 1, pp. 15-20. | Zbl 0515.60005
[005] Dubois D. and Prade H. (1986): Possibility Theory. - New York, London: Plenum Press. | Zbl 1053.62503
[006] Dubois D., Foulloy L. and Mauris G. (2004): Probability - Possibility transformations, triangular fuzzy sets, and probabilistic inequalities. - Reliable Computing, Vol. 10, No. 4, pp. 273-297. | Zbl 1043.60003
[007] Kaufmann A. and Gupta M.M. (1991): Introduction to Fuzzy Arithmetic. - New York: Van Nostrand Reinhold. | Zbl 0754.26012
[008] Kosiński W., Prokopowicz P. and Ślązak D. (2003): On algebraic operations on fuzzy reals, In: Neural Networks and Soft Computing (Rutkowski L., Siekmann J.,Tadeusiewicz R., Zadeh L.A., Eds.).- Heidelberg: Physica Verlag, pp. 54-61.
[009] Piegat A. (2001): Fuzzy Modeling and Control. - Heidelberg: Physica Verlag. | Zbl 0976.93001
[010] Piegat A. (2005): A new definition of the fuzzy set. - Appl.Math. Comput. Sci., Vol. 15, No. 1, pp. 125-140. | Zbl 1070.68137
[011] Rakus-Anderson E. (2003): The Newton interpolation method with fuzzy numbers as the entries, In: Neural Networks and Soft Computing (Rutkowski L., Siekmann J.,Tadeusiewicz R., Zadeh L.A., Eds.) - Heidelberg: Physica Verlag, pp. 310-315.
[012] Yager R.R. and Filev D. (1994): Essentials of Fuzzy Modeling and Control. - New York: Wiley.
[013] Von Altrock C. (1995): Fuzzy Logic. - Muenchen: R. Oldenburg Verlag. | Zbl 0875.03058
[014] Zadeh L.A. (1978): Fuzzy sets as a basis for a theory of possibility. - Fuzzy Sets Syst., Vol. 1, No. 1, pp. 3-28. | Zbl 0377.04002
[015] Zhou C. (2002): Fuzzy-arithmetic-based Lyapunov synthesis to the design of stable fuzzy controllers: Computing with Words approach. - Appl. Math.Comput. Sci., Vol. 12, No. 3, pp. 411-422. | Zbl 1098.93023
[016] Zimmermann H.J. and Zysno P. (1980): Latent connectives in human decision making. - Fuzzy Sets Syst., Vol. 4, No. 1, pp. 37-51. | Zbl 0435.90009
[017] Zimmermann H.J. (1991): Fuzzy Set Theory and Its Applications. - Boston: Kluwer. | Zbl 0719.04002