The classical Cayley-Hamilton theorem is extended to nonlinear time-varying systems with square and rectangular system matrices. It is shown that in both cases system matrices satisfy many equations with coefficients being the coefficients of characteristic polynomials of suitable square matrices. The proposed theorems are illustrated with numerical examples.
@article{bwmeta1.element.bwnjournal-article-amcv16i1p141bwm, author = {Kaczorek, Tadeusz}, title = {An extension of the Cayley-Hamilton theorem for nonlinear time-varying systems}, journal = {International Journal of Applied Mathematics and Computer Science}, volume = {16}, year = {2006}, pages = {141-145}, zbl = {1334.93084}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv16i1p141bwm} }
Kaczorek, Tadeusz. An extension of the Cayley-Hamilton theorem for nonlinear time-varying systems. International Journal of Applied Mathematics and Computer Science, Tome 16 (2006) pp. 141-145. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv16i1p141bwm/
[000] Busłowicz M. (1981): An algorithm of determination of the quasi-polynomial of multivariable time-invariant linear system with delays based on state equations. - Archive of Automatics and Telemechanics, Vol. XXXVI, No. 1, pp. 125-131, (in Polish). | Zbl 0484.93026
[001] Busłowicz M. (1982): Inversion of characteristic matrix of the time-delay systems of neural type. - Found. Contr. Eng.,Vol. 7, No. 4, pp. 195-210. | Zbl 0515.65025
[002] Busłowicz M. and Kaczorek T. (2004): Rechability and minimum energy control of positive linear discrete-time systems with one delay. - Proc. 12th Mediterranean Conf. Control and Automation, Kasadasi-Izmur, Turkey (on CD-ROM).
[003] Chang F.R. and Chan C.N. (1992): The generalized Cayley-Hamilton theorem for standard pencils. - Syst. Contr.Lett., Vol. 18, No. 3, pp. 179-182.
[004] Gantmacher F.R. (1974): The Theory of Matrices. - Vol. 2, Chelsea. | Zbl 0085.01001
[005] Kaczorek T. (1988): Vectors and Matrices in Automation and Electrotechnics. - Warsaw: Polish Scientific Publishers, (in Polish).
[006] Kaczorek T. (1992-1993): Linear Control Systems, Vols. I and II. - Taunton: Research Studies Press.
[007] Kaczorek T. (1994): Extensions of the Cayley-Hamilton theorem for 2D continuous-discrete linear systems. - Appl. Math. Comput. Sci.,Vol. 4, No. 4, pp. 507-515. | Zbl 0823.93032
[008] Kaczorek T. (1995a): An existence of the Cayley-Hamilton theorem for singular 2D linear systems with non-square matrices. - Bull. Pol. Acad. Techn.Sci., Vol. 43, No. 1, pp. 39-48. | Zbl 0845.93042
[009] Kaczorek T. (1995b): An existence of the Cayley-Hamilton theorem for nonsquare block matrices. - Bull. Pol. Acad. Techn. Sci.,Vol. 43, No. 1, pp. 49-56. | Zbl 0837.15012
[010] Kaczorek T. (1995c): Generalization of the Cayley-Hamilton theorem for nonsquare matrices. - Proc. Int. Conf. Fundamentals of Electrotechnics and Circuit Theory XVIII-SPETO, Gliwice, Poland, pp. 77-83.
[011] Kaczorek T. (1998): An extension of the Cayley-Hamilton theorem for a standard pair of block matrices. - Appl. Math. Com. Sci., Vol. 8, No. 3, pp. 511-516. | Zbl 0914.15011
[012] Kaczorek T. (2005a): Generalization of Cayley-Hamilton theorem for n-D polynomial matrices. - IEEE Trans. Automat Contr., Vol. 50, No. 5, pp. 671-674.
[013] Kaczorek T. (2005b): Extension of the Cayley-Hamilton theorem for continuous-time systems with delays. - Appl. Math. Comp. Sci., Vol. 15, No. 2, pp. 231-234. | Zbl 1084.34541
[014] Lancaster P. (1969): Theory of Matrices. - New York: Acad. Press. | Zbl 0186.05301
[015] Lewis F.L. (1982): Cayley-Hamilton theorem and Fadeev's method for the matrix pencil [sE-A]. - Proc. 22nd IEEE Conf. Decision and Control, San Diego, USA, pp. 1282-1288.
[016] Lewis F.L. (1986): Further remarks on the Cayley-Hamilton theorem and Fadeev's method for the matrix pencil [sE-A]. - IEEE Trans. Automat. Contr.,Vol. 31, No. 7, pp. 869-870. | Zbl 0601.15010
[017] Mcrtizios B.G. and Christodolous M.A. (1986): On the generalized Cayley-Hamilton theorem. - IEEE Trans. Automat. Contr., Vol. 31, No. 1, pp. 156-157.
[018] Smart N.M. and Barnett S. (1989): The algebra of matrices in n-dimensional systems. - IMA J. Math. Contr. Inf., Vol. 6, pp. 121-133. | Zbl 0678.93008
[019] Theodoru N.J. (1989): M-dimensional Cayley-Hamilton theorem. - IEEE Trans. Automat. Control, Vol. AC-34, No. 5, pp. 563-565.
[020] Victoria J. (1982): A block Cayley-Hamilton theorem. - Bull. Math. Soc. Sci. Math. Roum, Vol. 26, No. 1, pp. 93-97. | Zbl 0488.15006