A controller architecture for nonlinear systems described by Gaussian RBF neural networks is proposed. The controller is a stabilising solution to a class of nonlinear optimal state tracking problems and consists of a combination of a state feedback stabilising regulator and a feedforward neuro-controller. The state feedback stabilising regulator is computed on-line by transforming the tracking problem into a more manageable regulation one, which is solved within the framework of a nonlinear predictive control strategy with guaranteed stability. The feedforward neuro-controller has been designed using the concept of inverse mapping. The proposed control scheme is demonstrated on a simulated single-link robotic manipulator.
@article{bwmeta1.element.bwnjournal-article-amcv15i3p369bwm, author = {Ahmida, Zahir and Charef, Abdelfettah and Becerra, Victor}, title = {Stabilising solutions to a class of nonlinear optimal state tracking problems using radial basis function networks}, journal = {International Journal of Applied Mathematics and Computer Science}, volume = {15}, year = {2005}, pages = {369-381}, zbl = {1169.93389}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv15i3p369bwm} }
Ahmida, Zahir; Charef, Abdelfettah; Becerra, Victor. Stabilising solutions to a class of nonlinear optimal state tracking problems using radial basis function networks. International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) pp. 369-381. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv15i3p369bwm/
[000] Becerra V.M., Roberts P.D. and Griffiths G.W. (1998): Novel developments in process optimisation using predictive control. - J. Process Contr., Vol. 8, No. 2, pp. 117-138.
[001] Becerra V.M., Abu-el-zeet Z.H. and Roberts P.D. (1999): Integrating predictive control and economic optimisation. - Comput. Contr. Eng. J., Vol. 10, No. 5, pp. 198-208.
[002] Chen C.C. and Shaw L. (1982): On receding horizon feedback control. - Automatica, Vol. 18, No. 3, pp. 349-352. | Zbl 0479.93031
[003] Chen H. and Allgower F. (1998): A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability. - Automatica, Vol. 34, No. 10, pp. 1205-1217. | Zbl 0947.93013
[004] De Nicolao G., Magni L. and Scattolini R. (1997): Stabilizing receding-horizon control of nonlinear time-varying systems. - IEEE Trans.Automat. Contr., Vol. 43, No. 7, pp. 1030-1036. | Zbl 0951.93063
[005] Eaton J.W. and Rawlings J.B. (1992): Model predictive control of chemical processes. - Chem. Eng. Sci., Vol. 47, No. 4, pp. 705-720.
[006] Garces F., Becerra V.M., Kambhampati C. and Warwick K. (2003): Strategies for Feedback Linearisation: A Dynamic Neural Network Approach. - London: Springer.
[007] Garcia C.E., Prett D.M. and Morari M. (1989): Model predictive control: Theory and practice - A survey. - Automatica, Vol. 25, No. 3, pp. 335-347. | Zbl 0685.93029
[008] Hornik K., Stinchcombe M. and White H. (1989): Multilayer feedforward networks are universal approximators. - Neural Networks, Vol. 2,No. 5, pp. 359-366.
[009] Hunt K.J., Sbarbaro D., Zbikowski R. and Gawthrop P.J. (1992): Neural networks for control systems: A survey. - Automatica, Vol. 28, No. 6,pp. 1083-1112. | Zbl 0763.93004
[010] Kadirkamanathan V. and Niranjan M. (1993): A function estimation approach to sequential learning with neural networks. - Neural Comput., Vol. 5,No. 6, pp. 954-975.
[011] Kambhampati C., Delgado A., Mason J.D. and Warwick K. (1997): Stable receding horizon control based on recurrent networks. - IEE Proc. Contr. Theory Applic., Vol. 144, No. 3, pp. 249-254. | Zbl 0909.49021
[012] Keerthi S.S. and Gilbert E.G. (1988): Optimal, infinite-horizon feedback laws for a general class of constrained discrete-time systems. - J. Optim. Theory Applic., Vol. 57, No. 2, pp. 265-293. | Zbl 0622.93044
[013] Kwakernaak H. and Sivan R. (1972): Linear Optimal Control Systems.- New York: Wiley. | Zbl 0276.93001
[014] Magni L., De Nicolao G., Magnani L. and Scattolini R. (2001): A stabilizing model-based predictive control algorithm for nonlinear systems. - Automatica, Vol. 37, No. 9, pp. 1351-1362. | Zbl 0995.93033
[015] Mayne D.Q. and Michalska H. (1990): Receding horizon control of nonlinear systems. - IEEE Trans. Automat. Contr., Vol. 35, No. 7, pp. 814-824. | Zbl 0715.49036
[016] Mayne D.Q., Rawlings J.B., Rao C.V. and Scokaert P.O.M. (2000): Constrained model predictive control: Stability and optimality. - Automatica, Vol. 36, No. 6, pp. 789-814. | Zbl 0949.93003
[017] Michalska H. and Mayne D.Q. (1993): Robust receding horizon control of constrained nonlinear systems. - IEEE Trans. Automat. Contr., Vol. 38, No. 11, pp. 1623-1633. | Zbl 0790.93038
[018] Morari M. and Lee J.H. (1999): Model predictive control: Past, present and future. - Comput. Chem. Eng., Vol. 23, No. 4, pp. 667-682.
[019] Narendra K.S. and Parthasarathy K. (1990): Identification and control of dynamical using neural networks. - IEEE Trans. Neural Netw., Vol. 1, No. 1, pp. 4-27.
[020] Parisini T. and Zoppoli R. (1995): A receding-horizon regulator for nonlinear systems and a neural approximation. - Automatica, Vol. 31, No. 10, pp. 1443-1451. | Zbl 0850.93343
[021] Parisini T., Sanguinetti M. and Zoppoli R. (1998): Nonlinear stabilization by receding-horizon neural regulators. - Int. J. Contr., Vol. 70,No. 3, pp. 341-362. | Zbl 0925.93823
[022] Park Y.M., Choi M.S. and Lee K.W. (1996): An optimal tracking neuro-controller for nonlinear dynamic systems. - IEEE Trans. Neural Netw., Vol. 7, No. 5, pp. 1099-1110.
[023] Richalet J. (1993): Industrial applications of model based predictive control. - Automatica, Vol. 29, No. 5, pp. 1251-1274.
[024] Richalet J., Rault A., Testud J.L. and Papon J. (1978): Model predictive heuristic control: Application to industrial processes. - Automatica, Vol. 14,No. 2, pp. 413-428.
[025] Yingwei L., Sundararajan N. and Saratchandran P. (1997): Identification of time-varying nonlinear systems using minimal radial basis function neural networks. - IEE Proc. Contr. Theory Appl., Vol. 144, No. 2, pp. 202-208. | Zbl 0875.93073
[026] Zhihong M., Wu H.R. and Palaniswami M. (1998): An adaptive tracking controller using neural networks for a class of nonlinear systems. - IEEE Trans. Neural Netw., Vol. 9, No. 5, pp. 947-954.