Stochastic multivariable self-tuning tracker for non-gaussian systems
Filipovic, Vojislav
International Journal of Applied Mathematics and Computer Science, Tome 15 (2005), p. 351-357 / Harvested from The Polish Digital Mathematics Library

This paper considers the properties of a minimum variance self-tuning tracker for MIMO systems described by ARMAX models. It is assumed that the stochastic noise has a non-Gaussian distribution. Such an assumption introduces into a recursive algorithm a nonlinear transformation of the prediction error. The system under consideration is minimum phase with different dimensions for input and output vectors. In the paper the concept of Kronecker's product is used, which allows us to represent unknown parameters in the form of vectors. For parameter estimation a stochastic approximation algorithm is employed. Using the concept of the stochastic Lyapunov function, global stability and optimality of the feedback system are established.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:207749
@article{bwmeta1.element.bwnjournal-article-amcv15i3p351bwm,
     author = {Filipovic, Vojislav},
     title = {Stochastic multivariable self-tuning tracker for non-gaussian systems},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {15},
     year = {2005},
     pages = {351-357},
     zbl = {1169.93421},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv15i3p351bwm}
}
Filipovic, Vojislav. Stochastic multivariable self-tuning tracker for non-gaussian systems. International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) pp. 351-357. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv15i3p351bwm/

[000] Åström K.J. and Wittenmark B. (1973): On self-tuning regulators.- Automatica, Vol. 9, No. 2, pp. 185-199. | Zbl 0249.93049

[001] Åström K.J. and Wittenmark B. (1989): Adaptive Control. - New York: Addison Wesley.

[002] Åström K.J. and Wittenmark B. (1995): Adaptive Control. - New York: Addison Wesley.

[003] Becker J.A.H, Kumar P.R. and Wei C.Z. (1985): Adaptive control with the stochastic approximation algorithm. - IEEE Trans. Automat. Contr., Vol. 30, pp. 330-338. | Zbl 0591.93063

[004] Bercu B. (1995): Weighted estimation and tracking for ARMAX models. - SIAM J. Contr. Optim., Vol. 33, No. 1, pp. 89-106. | Zbl 0829.93072

[005] Caines P. (1988): Linear Stochastic Systems. - New York: Wiley. | Zbl 0658.93003

[006] Chen H.F. and Guo L. (1991): Identification and Stochastic Adaptive Control. - Basel: Birkhauser.

[007] Desoer C.A. and Vidyasagar M. (1975): Feedback Systems: Input-Output Properties. - New York: Academic Press. | Zbl 0327.93009

[008] Duflo M. (1997): Random Iterative Models. - New York: Springer. | Zbl 0868.62069

[009] Filipovic V. and Kovacevic B. (1994): On robust AML identification algorithms. - Automatica, Vol. 30, No. 12, pp. 1775-1778. | Zbl 0812.93071

[010] Filipovic V. (1996): Robustness of adaptive tracking for stochastic multivariable minimum variance controller. - Proc. 13th IFAC World Congress, San Francisco, USA, Vol. K, pp. 391-396.

[011] Filipovic V. (1999): Convergence and optimality of stochastic adaptive control scheme when the disturbance is non-Gaussian. - Proc. 14th IFAC World Congress, Beijing, China, pp. 875-880.

[012] Filipovic V. (2001): Robust adaptive one-step ahead predictor. - IMA J. Math. Contr. Inf., Vol. 18, pp. 491-500. | Zbl 1001.93025

[013] Goodwin G.C. and Sin K.S. (1984): Adaptive Filtering, Prediction and Control. - New Jersey: Prentice-Hall. | Zbl 0653.93001

[014] Goodwin G.C., Ramadge P. and Caines P. (1981): Discrete time stochastic adaptive control. - SIAM J. Contr. Optim., Vol. 19, No. 6, pp. 829-853. | Zbl 0473.93075

[015] Hall P. and Heyde C.C. (1980): Martingale Limit Theory and Its Applications. - New York: Academic Press. | Zbl 0462.60045

[016] Huber P. (2003): Robust Statistics. - New York: Wiley.

[017] Hubert M., Pison G., Strouf A. and Van Aelst S. (Eds.) (2004): Theory and Applications of Recent Robust Methods. - Basel: Birkhauser.

[018] Ioannou P.A. and Sun J. (1996): Robust Adaptive Control. - New Jersey: Prentice Hall. | Zbl 0839.93002

[019] Kumar P.R. and Varaija P. (1986): Stochastic Systems: Estimation, Identification, and Adaptive Control. - New Jersey: Prentice Hall.

[020] Kumar P.R. and Praly L. (1987): Self-tuning tracker. - SIAM J. Contr. Optim., Vol. 25, No. 4, pp. 1053-1071. | Zbl 0627.93039

[021] Kushner J.H. and Yin G.G. (2003): Stochastic Approximation. Algorithms and Applications. - New York: Springer. | Zbl 1026.62084

[022] Landau I.D., Lozano R. and M'Saad M. (1998): Adaptive Control. -New York: Springer.

[023] Lai T.L. and Wei C.Z. (1986): Extended least squares and their applications to adaptive control and prediction in linear systems. - IEEE Trans.Automat. Contr., Vol. 31, No. 6, pp. 898-906. | Zbl 0603.93060

[024] Lin W., Kumar P.R. and Seidman T. (1985): Will the self-tuning approach work for general cost criteria? - Syst. Contr. Lett., Vol. 6, No. 1, pp. 77-85. | Zbl 0574.93038

[025] Lucas A., Frances P.H. and Van Dijk D. (2005): Outlier Robust Analysis of Economic Time Series. - Oxford: Oxford University Press.

[026] Praly L., Lin S.F. and Kumar P.R. (1989): A robust adaptive minimum variance controller. - SIAM J. Contr. Optim., Vol. 27, No. 2, pp. 235-266. | Zbl 0676.93036

[027] Radenkovic M.S. and Michel A.N. (1992): Robust adaptive systems and self-stabilization. - IEEE Trans. Automat. Contr., Vol. 37, No. 9,pp. 1355-1369. | Zbl 0755.93052

[028] Robins H. and Siegmund D. (1971): A convergence theory for nonnegative almost supermartingale and same applications, In: Optimization Methods in Statistics (J.S. Rustagi, Ed.). - New York: Academic Press, p. 233-257.

[029] Rudin V. (1964): Principles of Mathematical Analysis. - New York: Mc Graw Hill. | Zbl 0148.02903

[030] Sastry S. and Bodson M. (1989): Adaptive Control: Stability, Convergence and Robustness. - New Jersey: Prentice Hall. | Zbl 0721.93046

[031] Shiryayev A.N. (2004): Probability, Vols. 1 and 2. - Moscow: MCNMO, (in Russian).