The main contribution of this work is to provide two algorithms for the computation of the minimal polynomial of univariate polynomial matrices. The first algorithm is based on the solution of linear matrix equations while the second one employs DFT techniques. The whole theory is illustrated with examples.
@article{bwmeta1.element.bwnjournal-article-amcv15i3p339bwm, author = {Karampetakis, Nicholas and Tzekis, Panagiotis}, title = {On the computation of the minimal polynomial of a polynomial matrix}, journal = {International Journal of Applied Mathematics and Computer Science}, volume = {15}, year = {2005}, pages = {339-349}, zbl = {1169.15300}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv15i3p339bwm} }
Karampetakis, Nicholas; Tzekis, Panagiotis. On the computation of the minimal polynomial of a polynomial matrix. International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) pp. 339-349. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv15i3p339bwm/
[000] Atiyah M.F. and McDonald I.G. (1964): Introduction to Commutative Algebra. - Reading, MA: Addison-Wesley.
[001] Augot D. and Camion P. (1997): On the computation of minimal polynomials, cyclic vectors, and Frobenius forms. - Lin. Alg. App., Vol. 260, pp. 61-94. | Zbl 0877.65022
[002] Ciftcibaci T. and Yuksel O. (1982): On the Cayley-Hamllton theorem for two-dimensional systems. - IEEE Trans. Automat.Contr., Vol. 27, No. 1, pp. 193-194.
[003] Coppersmith D. and Winograd S. (1990): Matrix multiplication via arithmetic progressions. - J. Symb. Comput., Vol. 9, No.3, pp. 251-280. | Zbl 0702.65046
[004] Faddeev D.K. and Faddeeva V.N. (1963): Computational Methods of Linear Algebra. - San Francisco: Freeman. | Zbl 0451.65015
[005] Fragulis G.F., Mertzios B. and Vardulakis A.I.G. (1991): Computation of the inverse of a polynomial matrix and evaluation of its Laurent expansion. - Int. J. Contr., Vol. 53, No. 2, pp. 431-443. | Zbl 0731.93027
[006] Fragulis G.F. (1995): Generalized Cayley-Hamilton theoremfor polynomial matrices with arbitrary degree. - Int. J. Contr., Vol. 62,No. 6, pp. 1341-1349. | Zbl 0843.93023
[007] Gałkowski K. (1996): Matrix description ofpolynomials multivariable. - Lin. Alg. Applic., Vol. 234,pp. 209-226. | Zbl 0849.93033
[008] Gantmacher F.R. (1959): The Theory of Matrices. - New York: Chelsea. | Zbl 0085.01001
[009] Givone D.D. and Roesser R.P. (1973): Minimization of multidimensional linear iterative circuits. - IEEE Trans. Comput., Vol. C-22.pp. 673-678. | Zbl 0256.94037
[010] Helmberg G., Wagner P. and Veltkamp G. (1993): On Faddeev-Leverrier's method for the computation of the characteristic polynomial of a matrix and of eigenvectors. - Lin. Alg. Applic., Vol. 185, pp. 219-223. | Zbl 0770.65023
[011] Kaczorek T. (1989): Existence and uniqueness of solutions and Cayley-Hamilton theorem for a general singular model of 2-D systems. - Bull. Polish Acad. Sci. Techn. Sci., Vol. 37, No. 5-6, pp. 275-284. | Zbl 0721.93045
[012] Kaczorek T. (1995a): An extension of the Cayley-Hamilton theorem for 2-D continuous-discrete linear systems. - Appl. Math. Comput. Sci., Vol. 4, No. 4, pp. 507-515. | Zbl 0823.93032
[013] Kaczorek T. (1995b): Generalization of the Cayley-Hamilton theorem for nonsquare matrices. - Proc. Int. Conf. Fundamentals of Electrotechnics and Circuit Theory XVIII-SPETO, Gliwice-Ustron, Poland, pp. 77-83.
[014] Kaczorek T. (1995c): An extension of the Cayley-Hamilton theorem for nonsquare block matrices and computation of the left and right inverses of matrices. - Bull. Polish Acad. Sci. Techn. Sci., Vol. 43, No. 1,pp. 49-56. | Zbl 0837.15012
[015] Kaczorek T. (1995d): An extension of the Cayley-Hamilton theorem for singular 2D linear systems with non-square matrices. - Bull. Polish Acad. Sci., Techn. Sci., Vol. 43, No. 1, pp. 39-48. | Zbl 0845.93042
[016] Kaczorek T. (1998): An extension of the Cayley-Hamiltontheorem for a standard pair of block matrices. - Appl. Math. Comput. Sci.,Vol. 8, No. 3, pp. 511-516. | Zbl 0914.15011
[017] Kaczorek T. (2005): Generalization of Cayley-Hamilton theorem for n-D polynomial matrices. - IEEE Trans. Automat. Contr., Vol. 50,No. 5, pp.671-674.
[018] Kitamoto T. (1999): Efficient computation of the characteristic polynomial of a polynomial matrix. - IEICE Trans. Fundament., Vol. E83-A, No.5, pp. 842-848.
[019] Lewis F.L. (1986): Further remarks on the Cayley-Hamilton theorem and Leverrier's method for the matrix pencil (sE-A). - IEEE Trans. Automat. Contr., Vol. 31, No. 9, pp. 869-870. | Zbl 0601.15010
[020] Mertzios B. and Christodoulou M. (1986): On the generalized Cayley-Hamilton theorem. - IEEE Trans. Automat. Contr.,Vol. 31, No. 2, pp. 156-157. | Zbl 0589.15008
[021] Paccagnella L. E. and Pierobon G. L. (1976): FFT calculation of a determinantal polynomial. - IEEE Trans. Automat. Contr.,Vol. 21, No. 3, pp. 401-402.
[022] Schuster A. and Hippe P. (1992): Inversion of polynomial matrices by interpolation. - IEEE Trans. Automat. Contr., Vol. 37, No. 3, pp. 363-365.
[023] Theodorou N.J. (1989): M-dimensional Cayley-Hamilton theorem. - IEEE Trans. Automat. Contr., Vol. 34, No. 5, pp. 563-565.
[024] Tzekis P. and Karampetakis N. (2005): On the computation of the minimal polynomial of a two-variable polynomial matrix. - Proc. 4th Int. Workshop Multidimensional (nD) Systems, Wuppertal, Germany. | Zbl 1169.15300
[025] Victoria J. (1982): A block Cayley-Hamilton theorem. - Bull. Math. Soc. Sci. Math. Roum., Vol. 26, No. 1, pp. 93-97. | Zbl 0488.15006
[026] Vilfan B. (1973): Another proof of the two-dimensional Cayley-Hamilton theorem. - IEEE Trans. Comput., Vol. C-22, pp. 1140. | Zbl 0268.15008
[027] Yu B. and Kitamoto T. (2000): The CHACM method for computing the characteristic polynomial of a polynomial matrix. - IEICE Trans. Fundament., E83-A, No.7, pp. 1405-1410.