Extension of the Cayley-Hamilton theorem to continuous-time linear systems with delays
Kaczorek, Tadeusz
International Journal of Applied Mathematics and Computer Science, Tome 15 (2005), p. 231-234 / Harvested from The Polish Digital Mathematics Library

The classical Cayley-Hamilton theorem is extended to continuous-time linear systems with delays. The matrices of the system with delays satisfy algebraic matrix equations with coefficients of the characteristic polynomial.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:207738
@article{bwmeta1.element.bwnjournal-article-amcv15i2p231bwm,
     author = {Kaczorek, Tadeusz},
     title = {Extension of the Cayley-Hamilton theorem to continuous-time linear systems with delays},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {15},
     year = {2005},
     pages = {231-234},
     zbl = {1084.34541},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv15i2p231bwm}
}
Kaczorek, Tadeusz. Extension of the Cayley-Hamilton theorem to continuous-time linear systems with delays. International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) pp. 231-234. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv15i2p231bwm/

[000] Busłowicz M. and Kaczorek T. (2004): Reachability and minimum energy control of positive linear discrete-time systems with one delay. - Proc. 12-th Mediterranean Conf. s Control and Automation, Kasadasi, Turkey: Izmir (on CD-ROM). | Zbl 1140.93450

[001] Chang F.R. and Chan C.N. (1992): The generalized Cayley-Hamilton theorem for standard pencis. - Syst. Contr. Lett., Vol. 18, No. 192, pp. 179-182

[002] Gałkowski K. (1996): Matrix description of multivariable polynomials. - Lin. Alg. and Its Applic., Vol. 234, No. 2, pp. 209-226. | Zbl 0849.93033

[003] Gantmacher F.R. (1974): The Theory of Matrices. - Vol. 2.-Chelsea: New York. | Zbl 0085.01001

[004] Kaczorek T. (19921993): Linear Control Systems. -Vols. I, II, Tauton: Research Studies Press. | Zbl 0784.93002

[005] Kaczorek T. (1994): Extensions of the Cayley-Hamilton theorem for 2D continuous-discrete linear systems. - Appl. Math. Comput. Sci., Vol. 4, No. 4, pp. 507-515. | Zbl 0823.93032

[006] Kaczorek T. (1995a): An existence of the Cayley-Hamilton theorem for singular 2D linear systems with non-square matrices. - Bull. Pol. Acad. Techn. Sci., Vol. 43,No. 1, pp. 39-48. | Zbl 0845.93042

[007] Kaczorek T. (1995b): An existence of the Cayley-Hamilton theorem for nonsquareblock matrices and computation of the left and right inverses of matrices. -Bull. Pol. Acad. Techn. Sci., Vol. 43, No. 1, pp. 49-56. | Zbl 0837.15012

[008] Kaczorek T. (1995c): Generalization of the Cayley-Hamilton theorem for nonsquare matrices.- Proc. Int. Conf. Fundamentals of Electrotechnics and Circuit Theory XVIII-SPETO, Ustron-Gliwice, Poland, pp. 77-83.

[009] Kaczorek T. (1998): An extension of the Cayley-Hamilton theorem for a standard pair of block matrices. - Appl. Math. Comput. Sci., Vol. 8, No. 3, pp. 511-516. | Zbl 0914.15011

[010] Kaczorek T. (2005): Generalization of Cayley-Hamilton theorem for n-D polynomial matrices. - IEEE Trans. Automat. Contr., No. 5, (in press).

[011] Lancaster P. (1969): Theory of Matrices. -New York, Academic, Press. | Zbl 0186.05301

[012] Lewis F.L. (1982): Cayley-Hamilton theorem and Fadeev's method for the matrix pencil [sE-A]. - Proc. 22nd IEEE Conf. Decision and Control, San Diego, USA, pp. 1282-1288.

[013] Lewis F.L. (1986): Further remarks on the Cayley-Hamilton theorem and Fadeev's method for the matrix pencil [sE-A]. - IEEE Trans. Automat. Contr., Vol. 31, No. 7, pp. 869-870. | Zbl 0601.15010

[014] Mertizios B.G and Christodoulous M.A. (1986): On the generalized Cayley-Hamilton theorem. - IEEE Trans. Automat. Contr., Vol. 31, No. 1, pp. 156-157.

[015] Smart N.M. and Barnett S. (1989): The algebra of matrices in n-dimensional systems. - Math. Contr. Inf., Vol. 6, No. 1, pp. 121-133. | Zbl 0678.93008

[016] Theodoru N.J. (1989): M-dimensional Cayley-Hamilton theorem. - IEEE Trans. Automat. Contr., Vol. AC-34, No. 5, pp. 563-565.

[017] Victoria J. (1982): A block Cayley-Hamilton theorem. - Bull. Math. Soc. Sci. Math. Roum, Vol. 26, No. 1, pp. 93-97. | Zbl 0488.15006