Output stabilization for infinite-dimensional bilinear systems
Zerrik, El ; Ouzahra, Mohamed
International Journal of Applied Mathematics and Computer Science, Tome 15 (2005), p. 187-195 / Harvested from The Polish Digital Mathematics Library

The purpose of this paper is to extend results on regional internal stabilization for infinite bilinear systems to the case where the subregion of interest is a part of the boundary of the system evolution domain. Then we characterize either stabilizing control on a boundary part, or the one minimizing a given cost of performance. The obtained results are illustrated with numerical examples.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:207734
@article{bwmeta1.element.bwnjournal-article-amcv15i2p187bwm,
     author = {Zerrik, El and Ouzahra, Mohamed},
     title = {Output stabilization for infinite-dimensional bilinear systems},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {15},
     year = {2005},
     pages = {187-195},
     zbl = {1086.93053},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv15i2p187bwm}
}
Zerrik, El; Ouzahra, Mohamed. Output stabilization for infinite-dimensional bilinear systems. International Journal of Applied Mathematics and Computer Science, Tome 15 (2005) pp. 187-195. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv15i2p187bwm/

[000] Ball J. and Slemrod M. (1979): Feedback stabilization of distributed semilinear control systems. - J. Appl. Math. Opt., Vol. 5, No. 5, pp. 169-179. | Zbl 0405.93030

[001] Ball J., Marsden J.E. and Slemrod M.(1982): Controllability for distributed bilinear systems. - SIAM. J. Contr. Optim., Vol. 20, No. 4, pp. 575-597. | Zbl 0485.93015

[002] Chilov G. (1970): Analyse mathèmatique. Fonctions de plusieurs variables rèelles. - Moscow: Mir, (in French). | Zbl 0317.26011

[003] Kato T. (1980): Perturbation Theory for Linear Operators. - Berlin: Springer. | Zbl 0435.47001

[004] Pazy A. (1983): Semi-Groups of Linear Operators and Applications to Partial Differential Equations. - New York: Springer. | Zbl 0516.47023

[005] Quinn J.P. (1980): Stabilization of bilinear systems by quadratic feedback control.- J. Math. Anal. Appl., Vol. 75, No. 1, pp. 66-80. | Zbl 0438.93054

[006] Triggiani R. (1975): On the stabilizability problem in Banach space. - J. Math. Anal. Appl., Vol. 52, pp. 383-403. | Zbl 0326.93023

[007] Zerrik E. and Ouzahra M. (2003a): Regional stabilization for infinite-dimensional systems.- Int. J. Contr., Vol. 76, No. 1, pp. 73-81. | Zbl 1037.93070

[008] Zerrik E., Ouzahra M. and Ztot K. (2004): Regional stabilization for infinite bilinear systems. - IEE Contr. Theory Appl., Vol. 151, No. 1, pp. 109-116.