The paper presents an application of the inverse analysis to the identification of two models: a phase transformation model and a rheological model. The optimization algorithm for the inverse analysis was tested for various techniques of searching for the minimum: derivative-free and gradient methods, as well as genetic algorithms. Simulation results were validated for microalloyed niobium steel. An optimization strategy, which is adequate for the inverse analysis, is suggested.
@article{bwmeta1.element.bwnjournal-article-amcv14i4p549bwm, author = {Szeliga, Danuta and Gaw\k ad, Jerzy and Pietrzyk, Maciej}, title = {Parameters identification of material models based on the inverse analysis}, journal = {International Journal of Applied Mathematics and Computer Science}, volume = {14}, year = {2004}, pages = {549-556}, zbl = {1077.74017}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv14i4p549bwm} }
Szeliga, Danuta; Gawąd, Jerzy; Pietrzyk, Maciej. Parameters identification of material models based on the inverse analysis. International Journal of Applied Mathematics and Computer Science, Tome 14 (2004) pp. 549-556. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv14i4p549bwm/
[000] Bodin A., Sietsma J. and van der Zwaag S. (2001): Flow stress prediction during intercritical deformation of a lowcarbon steel with a rule of mixtures and Fe-simulations. — Scripta Materialia, Vol. 45, No. 8, pp. 875–882.
[001] Boyer B. and Massoni E. (1999): Identification of tribological parameters during upsetting tests using inverse analysis with a 2D finite element code, In: Advanced Technology of Plasticity, Vol. I, (M. Geiger, Ed.). — Nuremberg: Univ. of Erlangen, pp. 347–352.
[002] Boyer B. and Massoni E.(2001): Inverse analysis for identification of parameters during thermo-mechanical tests. — Proc. Conf. NUMIFORM 2001, Toyohaski, Japan, pp. 281–284.
[003] Braasch H. and Estrin Y. (1993): Parameter identification for a two-internal-variable constitutive model using the evolution strategy, In: Material Parameter Estimation for Modern Constitutive Equations (L.A. Bertram, S.B. Brown and A.D. Freed, Eds.). — Fairfield: ASME, ADM, , Vol. 168, pp. 47–56.
[004] Forestier R., Massoni E. and Chastel Y. (2002): Estimation of constitutive parameters using an inverse method coupled to a 3D finite element software. — J. Mat. Proc. Techn., Vol. 125–126, pp. 594–601.
[005] Gavrus A., Massoni E. and Chenot J.L. (1996): An inverse analysis using a finite element model for identification of rheological parameters. — Proc. Conf. Metal Forming’96, Cracow, Poland, Vol. 60, pp.447–454.
[006] Gawąd J. and Szeliga D. (2002): Application of evolutionary algorithms for inverse analysis and computations. — Metal. Foundry Eng., Vol. 28, No. 2, pp. 137–150.
[007] Kobayashi S., Oh S.I. and Altan T. (1989): Metal Forming and the Finite Element Method. — Oxford: Oxford University Press.
[008] Kondek T., Szeliga D. and Pietrzyk M. (2003): Program for identification of rheological parameters based on the axisymmetrical compression test. — Proc. 10-th Conf. Kom- PlasTech, Wisła-Jawornik, Poland, pp. 207–214 (in Polish).
[009] Lenard J.G., M. Pietrzyk and L. Cser (1999): Mathematical and Physical Simulation of the Properties of Hot Rolled Products. — Amsterdam: Elsevier.
[010] Pietrzyk M., Kusiak H., Lenard J.G. and Malinowski Z. (1994): Heat exchange between the workpiece and the tool in metal forming processes. — Proc. Conf. FORMABILITY’94, Ostrava, Czech Republic, pp. 329–338.
[011] Pietrzyk M. and Kuziak R. (2004): Development of the constitutive law for microalloyed steels deformed in the twophase range of temperatures. — Proc. Conf. Metal Forming 2004, Cracow, Poland (in print).
[012] Szeliga D. and Pietrzyk M. (2001): Problem of the starting point generation for the inverse analysis of compression tests. — Metall. Foundry Eng., Vol. 27, No. 2, pp. 167–182.
[013] Szeliga D.and Pietrzyk M.(2002): Identification of rheological and tribological parameters, In: Metal Forming Science and Practice (Lenard J.G., Ed.). — Amsterdam: Elsevier, pp. 227–258.
[014] Szeliga D., Gawąd J., Kondek T. and PietrzykM. (2003): Identification of parameters of models based on the inverse analysis. — Proc. Conf. Computer methods and systems in scientific research and engineering desing, Cracow, Poland, pp. 761–766 (in Polish).
[015] Szyndler D., Pietrzyk M. and Kuziak R.(2001a): Estimation of rheological and friction parameters in hot forming processes as inverse problem. — Proc. Conf. ESAFORM 2001, Liege, Belgium, pp. 191–194.
[016] Szyndler D., Pietrzyk M. and Hodgson P.D. (2001b): Identification of parameters in the internal variable constitutive model and friction model for hot forming of steels. — Proc. Conf. NUMIFORM 2001, Toyohaski, Japan, pp. 297–302.
[017] Talar J., Szeliga D. and Pietrzyk M. (2002): Application of genetic algorithms for identification of rheological and friction parameters of copper. — Arch. Metall., Vol. 47, No. 1, pp. 27–41.