Tracking control algorithms for a laboratory aerodynamical system
Gorczyca, Przemysław ; Hajduk, Krystyn
International Journal of Applied Mathematics and Computer Science, Tome 14 (2004), p. 469-475 / Harvested from The Polish Digital Mathematics Library

The tracking control problem of a strongly nonlinear MIMO system is presented. The system shares some features with a helicopter, such as important interactions between the vertical and horizontal motions. The dedicated IO board allows for control, measurements and communication with a PC. The RTWT toolbox in the MATLAB environment is used to perform real-time experiments. The control task is to track a predefined reference trajectory. A mathematical model of the system, containing experimental characteristics, is used to design the controllers: a multidimensional PD, a suboptimal controller in the sense of a quadratic performance index and a variable gain controller.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:207712
@article{bwmeta1.element.bwnjournal-article-amcv14i4p469bwm,
     author = {Gorczyca, Przemys\l aw and Hajduk, Krystyn},
     title = {Tracking control algorithms for a laboratory aerodynamical system},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {14},
     year = {2004},
     pages = {469-475},
     zbl = {1137.93383},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv14i4p469bwm}
}
Gorczyca, Przemysław; Hajduk, Krystyn. Tracking control algorithms for a laboratory aerodynamical system. International Journal of Applied Mathematics and Computer Science, Tome 14 (2004) pp. 469-475. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv14i4p469bwm/

[000] Avila-Vilchis J.C., Brogliato B., Dzul A. and Lozano R. (2003): Nonlinear modeling and control of helicopters. - Automatica, Vol. 39, No. 9, pp. 1583-1596. | Zbl 1029.93046

[001] Dudgeon G.J.W., Gribble J.J. and O'Reilly J. (1997): Individual channel analysis and helicopter flight control in moderate- and large-amplitude maneuvers. - Contr. Eng. Pract., Vol. 5, No. 1, pp. 33-38.

[002] Gorczyca P., Hajduk K. and Kołek K. (1995): Data acquisition and control of nonlinear multidimensional system using Matlab. - Proc. 1st Nat. Conf. Matlab Users, Cracow, Poland, pp. 231-235, (in Polish).

[003] Gorczyca P. and Turnau A. (1998): Multidimensional nonlinear MIMO system, In: Computer Aided Calculations (M. Szymkat, Ed.). - Cracow: CCATIE, pp. 37-60, (in Polish).

[004] Horaček P. (2000): Laboratory experiments for control theory courses: A survey. - Ann. Rev. Contr., Vol. 24, No. 1, pp. 151-162.

[005] Luo C.-C., Liu R.-F., Yang C.-D. and Chang Y.-H. (2003): Helicopter H_∞ control design with robust flying quality. - Aerospace Sci. Technol., Vol. 7, No. 2, pp. 159-169. | Zbl 1032.93554

[006] MathWorks Inc. (1994-2004): Real-Time Windows Target - User'sGuide. - Natick: The MathWorks Inc.

[007] Murkherjee R. and Chen D. (1993): Control of free-flying underactuated space manipulators to equilibrum manifolds. - IEEE Trans. Automat. Contr., Vol. 9, No. 5, pp. 561-570.

[008] Pauluk M. (2002): Robust control of 3D crane. - Proc. IEEE Int. Conf. Math. Methods in Automation and Robotics, Szczecin, Poland, pp. 355-360.

[009] Padfield G.G. (1996): Helicopter Flight Dynamics: The Theory and Application of Flying Qualities and Simulation Modeling. - Washington: AIAA.

[010] Witkowski R. (1986): Construction and Pilotage of Choppers. Warsaw: WKiŁ, (in Polish).