Diagnosing corporate stability using grammatical evolution
Brabazon, Anthony ; O'Neill, Michael
International Journal of Applied Mathematics and Computer Science, Tome 14 (2004), p. 363-374 / Harvested from The Polish Digital Mathematics Library

Grammatical Evolution (GE) is a novel data-driven, model-induction tool, inspired by the biological gene-to-protein mapping process. This study provides an introduction to GE, and demonstrates the methodology by applying it to construct a series of models for the prediction of bankruptcy, employing information drawn from financial statements. Unlike prior studies in this domain, the raw financial information is not preprocessed into pre-determined financial ratios. Instead, the ratios to be incorporated into the classification rule are evolved from the raw financial data. This allows the creation and subsequent evolution of alternative ratio-based representations of the financial data. A sample of 178 publicly quoted, US firms, drawn from the period 1991 to 2000 are used to train and test the model. The best evolved model correctly classified 86 (77)% of the firms in the in-sample training set (out-of-sample validation set), one year prior to failure.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:207703
@article{bwmeta1.element.bwnjournal-article-amcv14i3p363bwm,
     author = {Brabazon, Anthony and O'Neill, Michael},
     title = {Diagnosing corporate stability using grammatical evolution},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {14},
     year = {2004},
     pages = {363-374},
     zbl = {1180.91240},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv14i3p363bwm}
}
Brabazon, Anthony; O'Neill, Michael. Diagnosing corporate stability using grammatical evolution. International Journal of Applied Mathematics and Computer Science, Tome 14 (2004) pp. 363-374. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv14i3p363bwm/

[000] Altman E. (1968): Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. — J. Finance, Vol. 23, No. 1, pp. 589–609.

[001] Altman E., Haldeman R. and Narayanan P. (1977): ZETA Analysis: A new model to identify bankruptcy risk of corporations. — J. Banking Finance, Vol. 1, No. 1, pp. 29–54.

[002] Altman E. (1993): Corporate Financial Distress and Bankruptcy. — New York: Wiley.

[003] Altman E. (2000): Predicting financial distress of companies: Revisiting the Z-score and Zeta models. — available at: http://www.stern.nyu.edu/ ealtman/Zscores.pdf.

[004] Argenti J. (1976): Corporate Collapse: The Causes and Symptoms. — London: McGraw-Hill.

[005] Back B., Laitinen T., Sere K. and van Wezel M. (1996): Choosing bankruptcy predictors using discriminant analysis, logit analysis and genetic algorithms. — Techn. Rep. No. 40, Turku Centre for Computer Science, Turku School of Economics and Business Administration.

[006] Beaver W. (1966): Financial ratios as predictors of failure. — J. Accounting Res., Supplement: Empirical Research in Accounting, Vol. 4, pp. 71–102.

[007] Brabazon A., O’Neill M., Matthews R. and Ryan C. (2002): Grammatical evolution and corporate failure prediction. — Proc. Genetic and Evolutionary Computation Conf. (GECCO 2002), New York: Morgan Kaufmann, pp. 1011– 1019.

[008] Dimitras A., Zanakis S. and Zopounidis C. (1996): A survey of business failures with an emphasis on prediction methods and industrial applications. — Europ. J. Oper. Res., Vol. 90, No. 3, pp. 487–513. | Zbl 0907.90038

[009] Easterbrook F. (1990): Is corporate bankruptcy efficient? — J. Finan. Econ., Vol. 27, pp. 411–417.

[010] Fan A. and Palaniswami M. (2000): A new approach to corporate loan default prediction from financial statements. — Proc. Computational Finance / Forecasting Financial Markets Conf. (CF/FFM-2000), London.

[011] Ferris S., Jayaraman N. and Makhija A. (1996): The impact of Chapter 11 filings on the risk and return of security holders, 1979–1989. — Adv. Finan. Econ., Vol. 2, pp. 93–118.

[012] Fitzpatrick P. (1932): A Comparison of the Ratios of Successful Industrial Enterprises with Those of Failed Companies.— Washington: The Accountants’ Publishing Company.

[013] Gentry J., Newbold P. and Whitford D. (1985): Classifying bankrupt firms with funds flow components.— J. Account. Res., Vol. 23, No. 1, pp. 146–160.

[014] Hambrick D. and D’Aveni R. (1988): Large corporate failures as downward spirals. — Admin. Sci. Quart., Vol. 33, pp. 1–23.

[015] Hair J., Anderson R., Tatham R. and Black W. (1998): Multivariate Data Analysis. — Upper Saddle River: Prentice Hall.

[016] Horrigan J. (1965): Some empirical bases of financial ratio analysis. — Account. Rev., Vol. 40, pp. 558–568.

[017] Koza J. (1992): Genetic Programming. — Massachusetts: MIT Press.

[018] Kumar N., Krovi R. and Rajagopalan B. (1997): Financial decision support with hybrid genetic and neural based modelling tools. — Europ. J. Oper. Res., Vol. 103, No. 2, pp. 339–349. | Zbl 0921.90101

[019] Levinthal D. (1991): Random walks and organisational mortality. — Admin. Sci. Quart., Vol. 36, No. 3, pp. 397–420.

[020] Lewin B. (2000): Genes VII. — Oxford University Press.

[021] Morris R. (1997): Early Warning Indicators of Corporate Failure: A Critical Review of Previous Research and Further Empirical Evidence.— London: Ashgate Publishing Limited.

[022] Moulton W. and Thomas H. (1993): Bankruptcy as a deliberate strategy: Theoretical considerations and empirical evidence. — Strat. Manag. J., Vol. 14, No. 2, pp. 125–135.

[023] Ohlson J. (1980): Financial ratios and the probabilistic prediction of bankruptcy. — J. Account. Res., Vol. 18, No. 1, pp. 109–131.

[024] O’Neill M. and Brabazon A. (2004): Grammatical swarm. — Proc. Genetic and Evolutionary Computation Conf. GECCO 2004, Seattle, USA, Vol. 1, pp. 163–174.

[025] O’Neill M. and Ryan C. (2003): Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language. — Boston: Kluwer Academic Publishers.

[026] O’Neill M. (2001): Automatic programming in an arbitrary language: Evolving programs with grammatical evolution.— Ph.D. thesis, University of Limerick, Ireland.

[027] O’Neill M. and Ryan C. (2001): Grammatical evolution. — IEEE Trans. Evolut. Comput., Vol. 5, No. 4, pp. 349–358.

[028] O’Sullivan J. and Ryan C. (2002): An investigation into the use of different search strategies with Grammatical Evolution, In: Lecture Notes in Computer Science (2278): Genetic Programming (J. Foster, E. Lutton, J. Miller, C. Ryan and A. Tettamanzi, Eds.).— Berlin: Springer-Verlag, pp. 103– 113.

[029] Russel P., Branch B. and Torbey V. (1999): Market valuation of bankrupt firms: Is there an anomaly? — Quart. J. Bus. Econ., Vol. 38, pp. 55–76.

[030] Ryan C., Collins J.J. and O’Neill M. (1998): Grammatical evolution: Evolving programs for an arbitrary language, In: Lecture Notes in Computer Science 1391, Proceedings of the First European Workshop on Genetic Programming (W. Banzhaf, R. Poli, M. Schoenauer, T.C. Fogarty, Eds.). — Berlin: Springer-Verlag, pp. 83–95.

[031] Schumpeter J. (1934): The Theory of Economic Development. — Cambridge, MA: Harvard Business Press.

[032] Serrano-Cinca C. (1996): Self organizing neural networks for financial diagnosis. — Dec. Supp. Syst., Vol. 17, No. 3, pp. 227–238.

[033] Shah J. and Murtaza M. (2000): A neural network based clustering procedure for bankruptcy prediction.— Amer. Bus. Rev., Vol. 18, No. 2, pp. 80–86.

[034] Smith R. andWinakor A. (1935): Changes in the financial structure of unsuccessful corporations.— University of Illinois, Bureau of Business Research, Bulletin No. 51.

[035] Tam K. (1991): Neural network models and the prediction of bank bankruptcy. — Omega, Vol. 19, No. 5, pp. 429–445.

[036] Varetto F. (1998): Genetic algorithms in the analysis of insolvency risk. — J. Bank. Fin., Vol. 22, No. 10, pp. 1421– 1439.

[037] Wilson N., Chong K. and Peel M. (1995): Neural network simulation and the prediction of corporate outcomes: Some empirical findings. — Int. J. Econ. Bus., Vol. 2, No. 1, pp. 31–50.

[038] Zhang G., Hu M., Patuwo B. and Indro D. (1999): Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis. — Europ. J. Oper. Res., Vol. 116, No. 1, pp. 16–32. | Zbl 0995.62506

[039] Zmijewski M. (1984): Methodological issues related to the estimation of financial distress prediction models. — J. Account. Res. – Supplement, Vol. 22, pp. 59–82.

[040] Zopounidis C. and Dimitras A. (1998): Multicriteria Decision Aid Methods for the Prediction of Business Failure. — Dordrecht: Kluwer Academic Publishers. | Zbl 0937.90036

[041] Zopounidis C., Slowinski R., Doumpos M., Dimitras A. and Susmaga R. (1999): Business failure prediction using rough sets: A comparision with multivariate analysis techniques. — Fuzzy Econ. Rev., Vol. 4, No. 1, pp. 3–33. | Zbl 0963.91023