A numerical procedure for filtering and efficient high-order signal differentiation
Ibrir, Salim ; Diop, Sette
International Journal of Applied Mathematics and Computer Science, Tome 14 (2004), p. 201-208 / Harvested from The Polish Digital Mathematics Library

In this paper, we propose a numerical algorithm for filtering and robust signal differentiation. The numerical procedure is based on the solution of a simplified linear optimization problem. A compromise between smoothing and fidelity with respect to the measurable data is achieved by the computation of an optimal regularization parameter that minimizes the Generalized Cross Validation criterion (GCV). Simulation results are given to highlight the effectiveness of the proposed procedure.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:207691
@article{bwmeta1.element.bwnjournal-article-amcv14i2p201bwm,
     author = {Ibrir, Salim and Diop, Sette},
     title = {A numerical procedure for filtering and efficient high-order signal differentiation},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {14},
     year = {2004},
     pages = {201-208},
     zbl = {1076.93042},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv14i2p201bwm}
}
Ibrir, Salim; Diop, Sette. A numerical procedure for filtering and efficient high-order signal differentiation. International Journal of Applied Mathematics and Computer Science, Tome 14 (2004) pp. 201-208. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv14i2p201bwm/

[000] Anderson R.S. and Bloomfield P. (1974): A time series approach to numerical differentiation. - Technom., Vol. 16, No. 1, pp. 69-75. | Zbl 0286.65012

[001] Barmish B.R. and Leitmann G. (1982): On ultimate boundness control of uncertain systems in the absence of matching assumptions. - IEEE Trans. Automat.Contr., Vol. AC-27, No. 1, pp. 153-158. | Zbl 0469.93043

[002] Chen Y. H. (1990): State estimation for non-linear uncertain systems: A design based on properties related to the uncertainty bound. - Int. J. Contr., Vol. 52, No. 5, pp. 1131-1146. | Zbl 0707.93005

[003] Chen Y. H. and Leitmann G. (1987): Robustness of uncertain systems in the absence of matching assumptions. - Int. J. Contr., Vol. 45, No. 5, pp. 1527-1542. | Zbl 0623.93023

[004] Ciccarella G., Mora M.D. and Germani A. (1993): A Luenberger-like observer for nonlinear systems. - Int. J. Contr., Vol. 57, No. 3, pp. 537-556. | Zbl 0772.93018

[005] Craven P. and Wahba G. (1979): Smoothing noisy data with spline functions: Estimation the correct degree of smoothing by the method of generalized cross-validation. - Numer. Math., Vol. 31, No.4, pp. 377-403. | Zbl 0377.65007

[006] Dawson D.M., Qu Z. and Caroll J.C. (1992): On the state observation and output feedback problems for nonlinear uncertain dynamic systems. - Syst.Contr. Lett., Vol. 18, No.3, pp. 217-222.

[007] De Boor C., (1978): A Practical Guide to Splines. - New York: Springer. | Zbl 0406.41003

[008] Diop S., Grizzle J.W., Morral P.E. and Stefanoupoulou A.G. (1993): Interpolation and numerical differentiation for observer design. - Proc. Amer. Contr. Conf., Evanston, IL, pp. 1329-1333.

[009] Eubank R.L. (1988): Spline Smoothing and Nonparametric Regression. -New York: Marcel Dekker. | Zbl 0702.62036

[010] Gasser T., Muller H.G. and Mammitzsch V. (1985): Kernels for nonparametric curve estimation. - J. Roy. Statist. Soc., Vol. B47, pp. 238-252. | Zbl 0574.62042

[011] Gauthier J.P., Hammouri H. and Othman S. (1992): A simple observer for nonlinear systems: Application to bioreactors. - IEEE Trans. Automat. Contr., Vol. 37, No. 6, pp. 875-880. | Zbl 0775.93020

[012] Georgiev A.A. (1984): Kernel estimates of functions and their derivatives with applications. - Statist. Prob. Lett., Vol. 2, pp. 45-50. | Zbl 0532.62023

[013] Hardle W. (1984): Robust regression function estimation. - Multivar.Anal., Vol. 14, pp. 169-180. | Zbl 0538.62029

[014] Hardle W. (1985): On robust kernel estimation of derivatives of regression functions. -Scand. J. Statist., Vol. 12, pp. 233-240. | Zbl 0568.62041

[015] Ibrir S. (1999): Numerical algorithm for filtering and state observation. -Int. J. Appl. Math. Comp. Sci., Vol. 9, No.4, pp. 855-869. | Zbl 0952.93037

[016] Ibrir S. (2000): Methodes numriques pour la commande et l'observation des systèmes non lineaires. - Ph.D. thesis, Laboratoire des Signaux et Systèmes, Univ. Paris-Sud.

[017] Ibrir S. (2001): New differentiators for control and observation applications. -Proc. Amer. Contr. Conf., Arlington, pp. 2522-2527.

[018] Ibrir S. (2003): Algebraic riccati equation based differentiation trackers. -AIAA J. Guid. Contr. Dynam., Vol. 26, No. 3, pp. 502-505.

[019] Kalman R.E. (1960): A new approach to linear filtering and prediction problems. -Trans. ASME J. Basic Eng., Vol. 82, No. D, pp. 35-45.

[020] Leitmann G. (1981): On the efficacy of nonlinear control in uncertain linear systems. - J. Dynam. Syst. Meas. Contr., Vol. 102, No.2, pp. 95-102. | Zbl 0473.93055

[021] Luenberger D.G. (1971): An introduction to observers. - IEEE Trans.Automat. Contr., Vol. 16, No.6, pp. 596-602.

[022] Misawa E.A. and Hedrick J.K. (1989): Nonlinear observers. A state of the art survey. - J. Dyn. Syst. Meas. Contr., Vol.111, No.3, pp. 344-351. | Zbl 0695.93106

[023] Muller H.G. (1984): Smooth optimum kernel estimators of densities, regression curves and modes. - Ann. Statist., Vol. 12, pp. 766-774. | Zbl 0543.62031

[024] Rajamani R. (1998): Observers for Lipschitz nonlinear systems. - IEEE Trans. Automat. Contr., Vol. 43, No. 3, pp. 397-400. | Zbl 0905.93009

[025] Reinsch C.H. (1967): Smoothing by spline functions. - Numer.Math., Vol. 10, pp. 177-183. | Zbl 0161.36203

[026] Reinsch C.H. (1971): Smoothing by spline functions ii. - Numer. Math., Vol. 16, No.5, pp. 451-454. | Zbl 1248.65020

[027] Slotine J.J.E., Hedrick J.K. and Misawa E.A. (1987): On sliding observers for nonlinear systems. - J. Dynam. Syst. Meas. Contr., Vol. 109, No.3, pp. 245-252. | Zbl 0661.93011

[028] Tornambè A. (1992): High-gain observers for nonlinear systems. - Int. J. Syst. Sci., Vol. 23, No.9, pp. 1475-1489. | Zbl 0768.93013

[029] Xia X.-H. and Gao W.-B. (1989): Nonlinear observer design by observer error linearization. - SIAM J. Contr. Optim., Vol. 27, No. 1, pp. 199- 216. | Zbl 0667.93014