An infinite horizon predictive control algorithm based on multivariable input-output models
Ławryńczuk, Maciej ; Tatjewski, Piotr
International Journal of Applied Mathematics and Computer Science, Tome 14 (2004), p. 167-180 / Harvested from The Polish Digital Mathematics Library

In this paper an infinite horizon predictive control algorithm, for which closed loop stability is guaranteed, is developed in the framework of multivariable linear input-output models. The original infinite dimensional optimisation problem is transformed into a finite dimensional one with a penalty term. In the unconstrained case the stabilising control law, using a numerically reliable SVD decomposition, is derived as an analytical formula, calculated off-line. Considering constraints needs solving on-line a quadratic programming problem. Additionally, it is shown how free and forced responses can be calculated without the necessity of solving a matrix Diophantine equation.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:207688
@article{bwmeta1.element.bwnjournal-article-amcv14i2p167bwm,
     author = {\L awry\'nczuk, Maciej and Tatjewski, Piotr},
     title = {An infinite horizon predictive control algorithm based on multivariable input-output models},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {14},
     year = {2004},
     pages = {167-180},
     zbl = {1076.93019},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv14i2p167bwm}
}
Ławryńczuk, Maciej; Tatjewski, Piotr. An infinite horizon predictive control algorithm based on multivariable input-output models. International Journal of Applied Mathematics and Computer Science, Tome 14 (2004) pp. 167-180. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv14i2p167bwm/

[000] Bitmead R.R., Gevers M. and Wertz V. (1990): Adaptive Optimal Control-The Thinking Man's GPC. - Englewood Cliffs: Prentice Hall. | Zbl 0751.93052

[001] Camacho E.F. and Bordons C. (1999): Model Predictive Control. - London: Springer.

[002] Chisci L. and Mosca E. (1994): Stabilizing I-O receding horizon control of CARMA plants. - IEEE Trans. Automat. Contr., Vol. 39, No. 3, pp. 614-618. | Zbl 0814.93058

[003] Clarke D.W. and Scattolini R. (1991): Constrained receding-horizon predictive control. - Proc. IEE, Part D, Vol. 138, No. 4, pp. 347-354. | Zbl 0743.93063

[004] Clarke D.W. and Mohtadi C. (1989): Properties ofgeneralized predictive control. - Automatica, Vol. 25, No. 6, pp. 859-875. | Zbl 0699.93028

[005] Clarke D.W., Mohtadi C. and Tuffs P.S. (1987a): Generalized predictive control - I. The basic algorithm. -Automatica, Vol. 23, No. 2, pp. 137-148. | Zbl 0621.93032

[006] Clarke D.W., Mohtadi C. and Tuffs P.S. (1987b): Generalized predictive control - II. Extensions and interpretations.- Automatica, Vol. 23, No. 2, pp. 149-160. | Zbl 0621.93033

[007] Cutler C.R. and Ramaker B.L. (1980): Dynamic matrix control - A computer control algorithm. - Proc. Joint. Automat. Contr. Conf., San Francisco.

[008] Golub G.H. and Van Loan C.F. (1989): Matrix Computations. - Baltimore: The Johns Hopkins University Press.

[009] Gutman P. and Hagander P. (1985): A new design of constrained controllers for linear systems. - IEEE Trans.Automat. Contr., Vol. 30, No. 1, pp. 22-33. | Zbl 0553.93052

[010] Henson M.A. (1998): Nonlinear model predictive control: current status and future directions. - Comput.Chem. Eng., Vol. 23, No. 2, pp. 187-202.

[011] Kailath T. (1980): Linear Systems. - Englewood Cliffs: Prentice Hall. | Zbl 0454.93001

[012] Kwon W.H. and Byun D.G. (1989): Receding horizon tracking control as a predictive control and its stability properties. -Int. J. Contr., Vol. 50, No. 5, pp. 1807-1824. | Zbl 0688.93020

[013] Maciejowski J.M. (2002): Predictive Control with Constraints. - Englewood Cliffs: Prentice Hall. | Zbl 0978.93002

[014] Mayne D.Q. (2001): Control of constrained dynamic systems. - Europ. J. Contr., Vol. 7, Nos. 2-3, pp. 87-99. | Zbl 1293.93299

[015] Mayne D.Q., Rawlings J.B., Rao C.V. and Scokaert P.O.M. (2000): Constrained model predictive control: Stability and optimality. - Automatica, Vol. 36, No. 6, pp. 789-814. | Zbl 0949.93003

[016] Morari M. and Lee J.H. (1999): Model predictive control: past, present and future. - Comput. Chem. Eng., Vol. 23, No. 45, pp. 667-682.

[017] Muske K.R. and Rawlings J.B. (1993): Model predictive control with linear models. - AIChE J., Vol. 39, No. 2, pp. 262-287.

[018] Ordys W.A., Hangstrup M.E. and Grimble M.J. (2000): Dynamic algorithm for linear quadratic Gaussian predictive control.- Int. J. Appl. Math. Comput. Sci., Vol. 10, No. 2, pp. 227-244. | Zbl 0981.93026

[019] Rawlings J.B. and Muske K.R. (1993): The stability of constrained receding horizon control. - IEEE Trans.Automat. Contr., Vol. 38, No. 10, pp. 1512-1516. | Zbl 0790.93019

[020] Rouhani R. and Mehra R.K. (1982): Model algoritmic control (MAC); Basic theoretical properties. - Automatica, Vol. 18, No. 4, pp. 401-414. | Zbl 0483.93045

[021] Scattolini R. and Bittanti S. (1990): On the choice of the horizon in long-range predictive control - some simple criteria. - Automatica, Vol. 26, No. 5, pp. 915-917. | Zbl 0701.93033

[022] Scokaert P.O.M. (1997): Infinite horizon generalized predictive control. - Int. J. Contr., Vol. 66, No. 1, pp. 161-175. | Zbl 0873.93033

[023] Scokaert P.O.M. and Clarke D. W. (1994): Stabilising properties of constrained predictive control.- Proc. IEE, Part D, Vol. 141, No. 5, pp. 295-304. | Zbl 0925.93555

[024] Sznaier M. and Damborg M.J. (1990): Heuristically enhanced feedback control of constrained discrete-time linear systems. - Automatica, Vol. 26, No. 3, pp. 521-532. | Zbl 0713.93023

[025] Tatjewski P. (2002): Advanced Control of Industrial Processes, Structures and Algorithms. - Warszawa: Akademicka Oficyna Wydawnicza Exit (in Polish).

[026] Zafiriou E. (1990): Robust model predictive control of processes with hard constraints. - Comput. Chem. Eng., Vol. 14, Nos. 45, pp. 359-371.

[027] Zafiriou E. and Marchal A.L. (1991): Stability of SISO quadratic dynamic matrix control with hard output constraints. - AIChE J., Vol. 37, No. 10, pp. 1550-1560.