In this paper we use the theory of monotone operators to generalize the linear shell model presented in (Blouza and Le Dret, 1999) to a class of physically nonlinear models. We present a family of nonlinear constitutive equations, for which we prove the existence and uniqueness of the solution of the presented nonlinear model, as well as the convergence of the Galerkin method. We also present the physical discussion of the model.
@article{bwmeta1.element.bwnjournal-article-amcv14i2p127bwm, author = {Kalita, Piotr}, title = {Koiter shell governed by strongly monotone constitutive equations}, journal = {International Journal of Applied Mathematics and Computer Science}, volume = {14}, year = {2004}, pages = {127-137}, zbl = {1329.74179}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv14i2p127bwm} }
Kalita, Piotr. Koiter shell governed by strongly monotone constitutive equations. International Journal of Applied Mathematics and Computer Science, Tome 14 (2004) pp. 127-137. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv14i2p127bwm/
[000] Antman S.S. (1995): Nonlinear Problems of Elasticity. -New York: Springer-Verlag. | Zbl 0820.73002
[001] Bernardou M. and Ciarlet P.G. (1976): Sur l'ellipticite du modele lineaire de coques de W.T. Koiter, In: Computing Methods in Applied Sciences and Engineering (R. Glowinski andJ.L. Lions, Eds.). - Heidelberg: Springer, Lect. Not. Econ., Vol. 134, pp. 89-136.
[002] Berne R.M. and Levy M.N. (1983): Physiology. - St. Louis: The C.V. Mosby Company.
[003] Blouza A. and Le Dret H. (1999): Existence and uniqueness for the linear Koiter model for shells with little regularity. -Quart. Appl. Math., Vol. 57, No. 2, pp. 317-337. | Zbl 1025.74020
[004] Cemal Eringen A. (1962): Nonlinear Theory of Continuous Media. - New York: McGraw-Hill.
[005] Chapelle D. and Bathe K.J. (1998): Fundamental considerations for the finite element analysis of shell structures. - Comput. Struct., Vol. 66, No. 1, pp. 19-36. | Zbl 0934.74073
[006] Ciarlet P.G. (2000): Mathematical Elasticity, Vol. III: Theory of Shells. - Amsterdam: Elsevier.
[007] Gajewski H., Gröger K. and Zacharias K. (1974): Nichtlineare operatorgleichungen undoperatordifferentialgleichungen. - Berlin: Akademie-Verlag. | Zbl 0289.47029
[008] Gaudiello A., Gustafsson B., Lefter C. and Mossino J.(2002): Asymptotic analysis for monotone quasilinear problems in thin multidomains. - Diff. Int. Eqns., Vol. 15, No. 5, pp. 623-640. | Zbl 1034.35020
[009] Kalita P. (2003): Arterial wall modeled by physically nonlinear Koiter shell. - Proc. 15th Int. Conf. Computer Methods in Mechanics CMM-2003, Gliwice/Wisła, Poland, (published on CD-ROM).
[010] Kerdid N. and Mato Eiroa P. (2000): Conforming finite element approximation for shells with little regularity. -Comput. Meth. Appl. Mech. Eng., Vol. 188, No. 1-3, pp. 95-107. | Zbl 0963.74062
[011] Koiter W.T. (1970): On the foundations of the linear theory of thin elastic shells. - Proc. Kon. Ned. Akad. Wetensch., Vol. B 73, pp. 169-195. | Zbl 0213.27002
[012] Noll W. and Truesdell C. (1965): Encyclopedia of Physics, Vol. III3: The Non-Linear Field Theories of Mechanics. - New York: Springer. | Zbl 0779.73004
[013] Rudin W. (1973): Functional Analysis. - New York: Blaisdell. | Zbl 0253.46001
[014] Schaefer R. and Sędziwy S. (1999), Filtration in cohesive soils: Mathematical model. - Comput. Assist. Mech. Eng. Sci., Vol. 6, No. 1, pp. 1-13. | Zbl 0970.76098